pwv_kpno: A Python Package for Modeling PWV transmission using SuomiNet GPS

Daniel Perrefort University of Pittsburgh

DESC Photometric Calibration 2018/10/04

Project Goal

"Use dual band GPS measurements of localized PWV to simulate the atmospheric absorption due to H_2O as a function of date and time."

Project deliverable must also be:

- 1. Easily extensible to user definable locations
- 2. Intuitive and simple to use
- 3. Conducive to a collaborative effort

Dual Band GPS

- Dual band signals pick up phase shift
 - Clock shift
 - Doppler effect
 - Atmospheric contribution
- Zenith Total Delay (ZTD)
 - Zenith Hydrostatic Delay (ZHD)
 - Zenith Wet Delay (ZWD)
- PWV = Q(T) * ZWD

> Frequency Independent

Calculating Transmission

Optical depth of material

$$T \equiv e^{-\tau} \quad s.t. \quad \tau = \sum_{i=1}^{N} \tau_i = \sum_{i=1}^{N} \tau_i = \sum_{i=1}^{N} \sigma_i \int_0^l n_i(z) dz$$

• In terms of PWV:

$$\tau_{PWV} = \sigma \; \frac{(N_a \cdot \rho_{PWV})}{\mu_{PWV}} \; PWV_z \; X^{.6}$$

 N_a = 6.02 E23 (1 / mol) μ_{PWV} = 18.0152 (g / mol) ρ_{PWV} = 0.99997 (g / cm^3)

version 1.0.0 python 2.7, 3.5+ license GPL v3.0 build passing coverage 73% astro-ph.im arXiv:1806.09701

What is pwv_kpno?

pwv_kpno is a science focused Python package that provides access to models for the atmospheric absorption due to H₂O. The strength of H₂O absorption features are strongly correlated with measurements of localized PWV column density. By measuring the delay of dual-band GPS signals traveling through the atmosphere, it is possible to determine the PWV column density along line of sight. **pwv_kpno** leverages this principle to provide atmospheric models for user definable sites as a function of date, time, and airmass.

How it Works

The SuomiNet project is a meteorological initiative that provides semi-hourly PWV measurements for hundreds of GPS receivers worldwide. The **pwv_kpno** package uses published SuomiNet data in conjunction with MODTRAN models to determine the modeled, time-dependent atmospheric transmission. By default, the package provides access to the modeled transmission function at Kitt Peak National Observatory. However, the package is designed to be easily extensible to other locations within the SuomiNet Network. Additionally, **pwv_kpno** provides access to atmospheric models as a function of PWV, which is independent of geographical location. Default atmospheric models are provided from 3,000 to 12,000 Angstroms at a resolution of 0.05 Angstroms.

Contributing and Attribution	Acknowledgements	Additional Resources
<i>pwv_kpno</i> is open source software released under the GNU General Public License. Issues raised on <u>GitHub</u> and pull	This work is based in part on observations taken at Kitt Peak National Observatory, National Optical Astronomy	1. An up time monitor for the SuomiNet web server can be found <u>here</u> .
requests from contributors are welcome. Additionally, pull requests introducing dafault configuration files for new sites are also welcome.	Observatory (NOAO Prop. IDs: 2011B-0482 and 2012B-0500; PI: Wood-Vasey), which is operated by the Association of Universities for Research in Astronomy (AURA) under a	2. To learn more about the SuomiNet project, see suominet.ucar.edu.
If you use pwv_kpno as part of any published work or research, we ask that you please cite <u>Perrefort, Wood-</u>	cooperative agreement with the National Science Foundation.	3. For an additional example on the correlation between GPS signals and atmospheric modeling, see <u>Blake and Shaw</u> ,
<u>Vasey et al. 2018</u> If the publisher allows, you can also include a footnote with a link pointing to this documentation page.	This work was supported in part by the US D Energy Office of Science under DE-SC000791	//mwvgroup.github.io/pwv_kpnc

version 1.0.0 python 2.7, 3.5+ license GPL v3.0 build passing coverage 73% astro-ph.im arXiv:1806.09701

What is pwv_kpno?

pwv_kpno is a science focused Python package that provides access to models for the atmospheric absorption due to H₂O. The strength of H₂O absorption features are strongly correlated with measurements of localized PWV column density. By measuring the delay of dual-band GPS signals traveling through the atmosphere, it is possible to determine the PWV column density along line of sight. **pwv_kpno** leverages this principle to provide atmospheric models for user definable sites as a function of date, time, and airmass.

How it Works

The SuomiNet project is a meteorological initiative that pro SuomiNet data in conjunction with MODTRAN models to det transmission function at Kitt Peak National Observatory. Howe provides access to atmospheric models as a function of PWV, v resolution of 0.05 Angstroms.

Contributing and Attribution

pwv_kpno is open source software released under the GNU General Public License. Issues raised on <u>GitHub</u> and pull requests from contributors are welcome. Additionally, pull requests introducing dafault configuration files for new sites are also welcome.

If you use **pwv_kpno** as part of any published work or research, we ask that you please cite <u>Perrefort, Wood-Vasey et al. 2018</u> If the publisher allows, you can also include a footnote with a link pointing to this documentation page.

Cornell University Library	We gratefully	acknowledge support from the Simons Foundation and member institutions		
arXiv.org > astro-ph > arXiv:1806.09701	Search or Article ID (Help Advanced search)	All fields \lor Q		
e Astrophysics > Instrumentation and Methods for Astrophysics	Do	wnload:		
pwv_kpno: A Python Package for Modeling the Atmospheric Transmission Function due to Precipitable Water Vapor	PE Ot (license	PDF Other formats (license)		
Daniel Perrefort, W. M. Wood-Vasey, K. Azalee Bostroem, Kirk Gilmore, Richard Joyce, Charles Con (Submitted on 25 Jun 2018) We present a Python package, pwv_kpno, that provides models for the atmospheric transmission due to pre- water vapor (PWV) above Kitt Peak National Observatory (KPNO). Using the package, ground based photomet	rson Curr astro < pre cipitable new tric Char	Current browse context: astro-ph.IM < prev next > new recent 1806 Change to browse by:		
observations taken in the <i>ugrizy</i> bands (3,000 < λ < 12,000 \AA) can be corrected for atmospheric effects PWV. Atmospheric transmission in the optical and near-infrared is highly dependent on the PWV column der line of sight. By measuring the delay of dual-band GPS signals through the atmosphere, the SuomiNet projec accurate PWV measurements for hundreds of locations around the world. We installed a dual-band GPS syste	due to astro- nsity along ct provides Referencement • NA	rences & Citations ISA ADS		
KPNO in the spring of 2015. The pwv_kpno package uses published SuomiNet data in conjunction with MOD models to determine the modeled atmospheric transmission function at Kitt Peak. In addition, we demonstra can successfully predict the PWV at KPNO from nearby dual-band GPS stations on the desert floor. We thus of atmospheric transmission functions for observations taken from 2010 onward. This software is modular and intended to be extensible to other observatories.	ate that we can provide d is	:mark (what is this?) 표 📲 없다 🛱 🎆 🎆		
Subjects: Instrumentation and Methods for Astronousics (astro-nh IM)				

Subjects: Instrumentation and Methods for Astrophysics (astro-ph.IM) Cite as: arXiv:1806.09701 [astro-ph.IM] (or arXiv:1806.09701/1 [astro-ph.IM] for this version)

	Search projects	Q	Help	Donate	Login	Register
pwv-k	pno 0.12.1				 Image: A second s	Latest version
pip ins	tall pwv-kpno 🏼			Le	ast release	d: Sep 3, 2018

Models the atmospheric transmission function for KPNO

Navigation

E Project description

3 Release history

🛓 Download files

Project links

Homepage

Project description

Overview

pwv_kpno is a Python package for modeling the atmospheric absorption due to H₂O at Kitt Peak National Observatory. It provides atmospheric models from 3,000 to 12,000 Angstroms for years 2010 onward. Understanding atmospheric effects is important when calibrating ground based astronomical observations. Traditionally, determining the detailed atmospheric transmission function at a given date and time required performing dedicated spectrographic observations. **pwv_kpno** provides an alternative that can be performed at the user's convenience.

Package Features

- Automatic download and parsing of new SuomiNet Data
- Access to full set of (downloaded) SuomiNet data
- PWV transmission model for given date, time, and airmass
 - 3,000 to 12,000 Å at 0.5 Å resolution
- PWV transmission model for given PWV
- Transmission models can be easily binned
- Guided process for extending to user defined sites
- Sharable config files for each site
- Black body spectral energy distribution with atmospheric features
- Full, online documentation, examples, and validation overview

Download Data from SuomiNet:

1 2

1

>>> from pwv_kpno import pwv_atm

>>> pwv_atm.update_models()

Model the Atmosphere:

```
>>> from datetime import datetime
>>> from pwv_kpno import pwv_atm
>>> import pytz
>>>
>>> obsv_date = datetime(year=2013,
                          month=12,
>>>
                          day=15,
>>>
                          hour=5,
>>>
                          minute=35,
>>>
                          tzinfo=pytz.utc)
>>>
>>>
>>> pwv_atm.trans_for_date(date=obsv_date, airmass=1.2)
  wavelength transmission transmission_err
   Angstrom
     3000.00 0.999999991637 1.3506621821e-08
     3000.05 0.999999991637 1.3507332141e-08
     3000.10 0.999999991637 1.3507963636e-08
         . . .
                         . . .
                                           . . .
```


From install to transmission function in minutes. So how does it work? And how well?

- 1. Kitt Peak National Observatory (KITT)
- 2. Amado Arizona (AZAM)
- 3. Sahuarita Arizona (P014)
- 4. University of Arizona (SA46)
- 5. Tohono O'odham Community College (SA48)

- Atmospheric Models for each site are averaged together
- Users can include as many or as few supplementary sites as desired
- No modeling for data gaps of 1 day or longer

SuomiNet Data Isn't Perfect

- Rounding Error in public data
 - Add 0.025 to all reported errors
- Unidentified error increase in 2013
- Duplicate data records (uncommon)
 - Isolated to specific instance
 - Ignore disagreements, keep agreements
- Hourly data for Conus, but daily for international
- Subject to PWV spikes for hardware malfunctions

Unexplained error increase occurs across multiple sites

Available Parameters:

- 1. Date
- 2. PWV
- 3. PWV Error
- 4. Zenith Delay
- 5. Temperature
- 6. Pressure
- 7. Relative Humidity

Site Name	Receiver ID Code	Lower Pressure Cut	Upper Pressure Cut
Kitt Peak Az	КІТТ	775 mbar	1000 mbar
Amado Az	AZAM	880 mbar	925 mbar
Sahuarita AZ	P014	870 mbar	1000 mbar
Tuscon Az	SA46	900 mbar	1000 mbar
Sells Az	SA48	910 mbar	1000 mbar

Custom Site Modeling

```
>>> from pwv_kpno.package_settings import ConfigBuilder
>>> new_config = ConfigBuilder(
>>> site_name='cerro_tololo',
>>> primary_rec='CTIO',
>>> sup_rec=[]
>>> )
>>> new_config.save_to_ecsv('./cerro_tololo.ecsv')
```

Includes options for:

1 2

3

4

5

6

7 8

9

- 1. Site name (Site ID)
- 2. Primary and supplemental receivers
- 3. H_2O cross sections
- 4. Data Cuts

Custom Site Modeling

```
>>> from pwv_kpno.package_settings import ConfigBuilder
1
 2
     >>>
 3
     >>> new config = ConfigBuilder(
 4
             site_name='cerro_tololo',
     >>>
         primary rec='CTIO',
 5
     >>>
         sup_rec=[],
 6
     >>>
 7
             wavelength=custom_wavelengths, # Array of wavelengths in Angstroms
     >>>
             cross_section=custom_cross_sections # Array of cross sections in cm^2
8
     >>>
    >>> )
 9
10
     >>>
     >>> new_config.save_to_ecsv('./cerro_tololo.ecsv')
11
```

Add your new site to the package:

```
>>> from pwv_kpno.package_settings import settings
>>> settings.import_site_config('./cerro_tololo.ecsv')
```

Easily switch between different sites:

```
>>> settings.set_site('cerro_tololo')
```

```
>>> print(settings.site_name)
```

1 2

1

2

Moving Forward

- Version 1.0 coming soon! (Public release ~1.5 weeks away)
- Improved modeling of PWV between sites
 - Machine learning favored over meteorological models
- Further investigation into effects of line saturation (>9,000 Å)
 - Fit EW of observations to compare PWV
- Additional validation on real world observations
- Fine tuning of airmass dependence

