
A Crash Course in Software
Verification and Unit Tests

Daniel Perrefort
University of Pittsburgh

February 4, 2020

After this talk you should…

1. Understand the differences between validation/verification and
how that relates to unit tests

2. Be able to argue why testing your code is important

3. Know how to write a generic test case

4. Know what CI is and how it fits in your work-flow

2

#

So you can find
things later

1

Validation is intended to ensure a product, service, or system results in a
deliverable that meets the operational needs of the user.

Verification is intended to check that a product, service, or system meets
a set of design specifications.

Validation Vs. Verification

https://en.wikipedia.org/wiki/Verification_and_validation3

https://en.wikipedia.org/wiki/Verification_and_validation

1

Validation is intended to ensure a product, service, or system results in a
deliverable that meets the operational needs of the user.

• In English: Are we building the right system?

Verification is intended to check that a product, service, or system meets
a set of design specifications.

• In English: Are we building the system right?

Validation Vs. Verification

https://en.wikipedia.org/wiki/Verification_and_validation4

https://en.wikipedia.org/wiki/Verification_and_validation

1

Validation is intended to ensure a product, service, or system results in a
deliverable that meets the operational needs of the user.

• In English: Are we building the right system?

Verification is intended to check that a product, service, or system meets
a set of design specifications.

• In English: Are we building the system right?

You add a blue “submit” button to an online form:
• Is it blue? Is “submit” spelled right?
• Does the underlying function raise an error if the input (i.e. the form) is

empty?

Validation Vs. Verification

https://en.wikipedia.org/wiki/Verification_and_validation5

https://en.wikipedia.org/wiki/Verification_and_validation

1

Validation is intended to ensure a product, service, or system results in a
deliverable that meets the operational needs of the user.

• In English: Are we building the right system?

Verification is intended to check that a product, service, or system meets
a set of design specifications.

• In English: Are we building the system right?

You add a blue “submit” button to an online form:
• Is it blue? Is “submit” spelled right? <- (Validation)
• Does the underlying function raise an error if the input (i.e. the form) is

empty? <- (Verification)

Validation Vs. Verification

https://en.wikipedia.org/wiki/Verification_and_validation6

https://en.wikipedia.org/wiki/Verification_and_validation

1

• As scientists, we care about validation…
• To make sure we simulate the right things
• To avoid costly mistakes (computation time / funding)
• Usually care the most for large scale projects

• We also care about verification…
• To make sure our results are correct
• To ensure our results are reproducible
• For every single project!!!

Why do I care about this?

7

2

If you wouldn’t trust a published mathematical result from someone

who never double checked their work …

Why do I care about verification?

… then you shouldn’t trust results from an untested software
pipeline either

… and yes, that includes YOUR code too!!!

8

Pros / Cons of Writing Tests

The Pros …
• You want to be sure your code really

works

• Helps ensure the validity of your

results (They eliminate human error)

• Saves time and effort in the long

term (Find bugs early)

• Simplifies deployment and

reproducibility

• You can refactor your code with
confidence

• Forces you to write develop better
code quality

• Forces you to be knowledgeable
about the behavior and performance
of your code

• They make it easier to add features

2

9

Pros / Cons of Writing Tests

The Cons …

• They require more time up front

• You end up with more code to maintain

• They don’t cover UI

• It takes a bit of practice to get good at

2

10

3

“Functional Testing”: A type of software testing that validates the

software system against the functional requirements/specifications.

How do I test my code?

11

3

“Functional Testing”: A type of software testing that validates the

software system against the functional requirements/specifications.

Unit Testing: A method by which individual units of the source code

are tested to determine if they are functionally correct.

How do I test my code?

12

3

“Functional Testing”: A type of software testing that validates the

software system against the functional requirements/specifications.

Unit Testing: A method by which individual units of the source code

are tested to determine if they are functionally correct.

How do I test my code?

(Key Concept!!!)

Let’s start with an example ->13

from unittest import TestCase

def add(x, y):

return x + y

class TestAdd(TestCase):

def test_five_plus_four(self):

self.assertEqual(add(5, 4), 9)

3
Exam

ple 1

There are other options to `unittest` (Thanks Brett!):
https://www.slant.co/versus/9148/9149/~unittest_vs_pytest

14

https://www.slant.co/versus/9148/9149/~unittest_vs_pytest

3Step 1: Organizing Your Code

• Disorganized code is not testable code. Organized code usually testable
Use functions/modules (or methods/classes in OOD) to separate code into logical units.

• “You can’t test a for loop” – MWV

• Design before you write
• Ask what functionality you need
• Decide how to write it
• Write a well documented function

15

3Step 1: Organizing Your Code

• Disorganized code is not testable code. Organized code usually testable
Use functions/modules (or methods/classes in OOD) to separate code into logical units.

• “You can’t test a for loop” – MWV

• Design before you write
• Ask what functionality you need
• Decide how to write it
• Write a well documented function

• Better quality code
• Fewer code revisions
• Faster development
• Less headaches

16

Things We Should Talk About… but Won’t

SOLID: See https://medium.com/feedzaitech/writing-testable-code-b3201d4538eb for a great overview!

• Single Responsibility Principle (SRP)
• Each software module should only have one reason to change.

• Open/Closed Principle (OCP)
• Your classes should be open for extension but closed to modifications.

• Liskov Substitution Principle (LSP)
• Objects of a superclass shall be replaceable with objects of its subclasses without breaking the application.

• Interface Segregation Principle (ISP)
• No client should be forced to depend on methods it does not use.

• Dependency Inversion Principle (DIP)
• High-level modules should not depend on low-level modules; both should depend on abstractions.

17

3

https://medium.com/feedzaitech/writing-testable-code-b3201d4538eb

3Step 2: Organizing Your Tests

tests/my_module.py

class TestAdd(TestCase):
def test_five_plus_four(self):

Magic

class TestSubtract(TestCase):
More magic

class TestNobelPrizePhysicsSimulation(testCase):
def test_with_air_resistance(self):

Even more magic

def test_in_a_vacuum(self):
A crazy, incredible amount of magic

• Put tests in a “tests” directory
located in the same place as your
source code

• Give each module its own script

• Give each function its own class

One possible solution is to:

18

from unittest import TestCase

class TestStringMethods(TestCase):

def test_upper(self):

self.assertEqual('foo'.upper(), ‘FOO’)

def test_isupper(self):

self.assertTrue(‘FOO’.isupper())

self.assertFalse(‘Foo’.isupper())

def test_split(self):

s = 'hello world’

self.assertListEqual(s.split(), [‘hello’,’ ‘world’])

check that s.split fails when the separator is not a string

self.assertRaises(TypeError, s.plit, 2)

3
Exam

ple 2

19

Method Name Checks that

assertEqual(a, b) a == b

assertNotEqual(a, b) a != b

assertTrue(x) bool(x) is True

assertFalse(x) bool(x) is False

assertIs(a, b) a is b

assertIsNot(a, b) a is not b

assertIsNone(x) x is None

assertIsNotNone(x) x is not None

assertIn(a, b) a in b

assertNotIn(a, b) a not in b

assertIsInstance(a, b) isinstance(a, b)

assertNotIsInstance(a, b) not isinstance(a, b)

Method Name Checks that

assertAlmostEqual(a, b) round(a-b, 7) == 0

assertNotAlmostEqual(a, b) round(a-b, 7) != 0

assertGreater(a, b) a > b

assertGreaterEqual(a, b) a >= b

assertLess(a, b) a < b

assertLessEqual(a, b) a <= b

assertRegex(s, r) r.search(s)

assertNotRegex(s, r) not r.search(s)

assertCountEqual(a, b)

a and b have the
same elements in the
same number,
regardless of their
order.

By inheriting from the TestCase class, you get access to a
comprehensive collection of prebuilt testing criteria!
This is all listed in the official docs!

20

3

Method Name Checks that

assertRaises(exc, fun, *args, **kwds) fun(*args, **kwds) raises exc

assertRaisesRegex(exc, r, fun, *args,
**kwds)

fun(*args, **kwds) raises exc
and the message matches
regex r

assertWarns(warn, fun, *args, **kwds) fun(*args, **kwds) raises
warn

assertWarnsRegex(warn, r, fun, *args,
**kwds)

fun(*args, **kwds) raises
warn and the message
matches regex r

assertLogs(logger, level) The with block logs on
logger with minimum level

Method Name Checks that

assertMultiLineEqual(a, b) strings

assertSequenceEqual(a, b) sequences

assertListEqual(a, b) lists

assertTupleEqual(a, b) tuples

assertSetEqual(a, b) sets or frozensets

assertDictEqual(a, b) dicts

Type specific tests can be used to handle
certain special cases.

“Production” style tests can be used to test the
creation of exceptions, warnings, and log messages

Method Name Checks that

pass() def setup(self)

fail() def setupClass(self)

@skipif

Some general utilities

21

3

def zp_bias(ref_temp: float, cal_temp : float, band: tuple, pwv : float):
"""Calculate the residual error in the photometric zero point due to PWV

Args:
ref_temp: The temperature of the star used to calibrate the image in Kelvin
cal_temp: The temperature of another star in the same image
band: An array specifying a photometric bandpass
pwv:: The PWV concentration along line of sight in mm

Returns:
The error in magnitudes for the photometric zero point of the given band

"""

Values for reference star
ref_mag = magnitude(ref_temp, band, 0)
ref_mag_atm = magnitude(ref_temp, band, pwv)
ref_zero_point = ref_mag - ref_mag_atm

Values for star being calibrated
cal_mag = magnitude(cal_temp, band, 0)
cal_mag_atm = magnitude(cal_temp, band, pwv)
cal_zero_point = cal_mag - cal_mag_atm

return cal_zero_point - ref_zero_point

Exam
ple 3

22

3

def zp_bias(ref_temp: float, cal_temp : float, band: tuple, pwv : float):
"""Calculate the residual error in the photometric zero point due to PWV

Args:
ref_temp: The temperature of the star used to calibrate the image in Kelvin
cal_temp: The temperature of another star in the same image
band: An array specifying a photometric bandpass
pwv:: The PWV concentration along line of sight in mm

Returns:
The error in magnitudes for the photometric zero point of the given band

"""

Values for reference star
ref_mag = magnitude(ref_temp, band, 0)
ref_mag_atm = magnitude(ref_temp, band, pwv)
ref_zero_point = ref_mag - ref_mag_atm

Values for star being calibrated
cal_mag = magnitude(cal_temp, band, 0)
cal_mag_atm = magnitude(cal_temp, band, pwv)
cal_zero_point = cal_mag - cal_mag_atm

return cal_zero_point - ref_zero_point

Exam
ple 3

23

3

class ZeroPointBias(TestCase):
"""Tests for the function blackbody.zp_bias"""

def test_same_temperature(self):
"""Tests that bias is zero for stars of same temperature"""

msg = "Returned bias was non-zero"
bias_3000 = zp_bias(3000, 3000, (7000, 8500), 13)
self.assertEqual(0, bias_3000, msg)

bias_6000 = zp_bias(6000, 6000, (8500, 10000), 13)
self.assertEqual(0, bias_6000, msg)

def test_returned_sign(self):
"""Tests that bias has expected sign"""

msg = "Returned bias has incorrect sign"
bias_3_6 = zp_bias(3000, 6000, (7000, 8500), 13)
self.assertLess(0, bias_3_6, msg)

bias_6_3 = zp_bias(6000, 3000, (7000, 8500), 13)
self.assertGreater(0, bias_6_3, msg)

Exam
ple 3

24

3

Good Testing Practice

Try to …

• Emphasize the usage of test UNITS

• Avoid test interdependence

• Keep tests short

• Hard setup = bad unit

Try not to …

• Rely on network access

• Perform I/O tasks

• Rely on the file system / Hit a
database

• Repeat yourself

25

3

Incorporating Tests in Your Workflow

Option 1: Run tests directly from a dedicated test script (Not Ideal)

26

4

Option 1: Have a dedicated test script

import unittest

<… some unit tests here… >

if __name__ == ‘__main__’:

unittest.main()

This is cumbersome …

You will never, ever bring
yourself to actually run this
script …

27

4

Incorporating Tests in Your Workflow

Option 1: Run tests directly from a dedicated test script (Not Ideal)

Option 2: Run your test suite from the command line (A better option)

28

4

Incorporating Tests in Your Workflow 4

Incorporating Tests in Your Workflow

Option 1: Run tests directly from a dedicated test script (Not Ideal)

Option 2: Run your test suite using PyTest (A better option)

Option 3: Work within an IDE (A great option!)

30

4

Incorporating Tests in Your Workflow

• Runs at a key stroke

• Highlights test coverage
from within the editor

• Makes it easy to run
frequently as you commit

31

4

Incorporating Tests in Your Workflow

Option 1: Run tests directly from a dedicated test script (Not Ideal)

Option 2: Run your test suite using a CLI like PyTest (A better option)

Option 3: Work within an IDE (A great option!)

Option 4: Run tests with a continuous integration tool like Travis (Now we’re talking!!!)

32

4

Incorporating Tests in Your Workflow

• Runs automatically on every
branch, every time!

• Keeps you focused on
developing without stopping
to run tests

• Easily customized to your
needs via a config file

• Email alerts once something
goes wrong

• Can run multiple OS / Python
combos

4

In Summary…

1. Building the right code / building code right (validation/verification)

2. Tests provide multiple benefits, but do require some time commitment
• Ensures the desired behavior
• Trades off upfront development time for savings down the road
• Faster bug identification and correction

3. `unittest` is built into Python and provides extensive, prebuilt functionality

4. Look for ways to incorporate tests into your DE – Travis can help
34

