
Good Coding

Practices
Daniel Perrefort – University of Pittsburgh

What is a Best

Practice?

 Best practices are any procedure that is

accepted as being the most effective either

by consensus or by prescription.

 Practices can range from stylistic to in-depth

design methodologies.

"A universal convention supplies all of maintainability, clarity, consistency, and a
foundation for good programming habits too."

—Tim Peters on comp.lang.python, 2001-06-16

A Roadmap

PEP’s and good styling

Writing good documentation

How to organize your project

Python Enhancement Protocol (PEP)

Important
Fundamentals

PEP 8: Style Guide for Python Code

PEP 20: The Zen of Python

PEP 257: Docstring Conventions

Bonus PEPs PEP 484: Type Hints

PEP 498: Literal String Interpolation

PEP 572: Assignment Expressions

“A PEP is a design document providing information to the Python community, or
describing a new feature for Python or its processes or environment.” (PEP 1)

PEP 20: The

Zen of Python

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.

Although that way may not be obvious at first unless you're Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let's do more of those!

>>> import this

PEP 8: Style

Guide for

Python Code

Code is read much more often than it is
written.

Easy to read means easier to develop.

Well written code conveys
professionalism.

Code is a deliverable part of your
project!

PEP8: Code Layout

 Using 4 spaces per indentation level (not tabs!)

 Putting two blank lines before functions and classes

 Limiting line lengths to:

 79 characters for code

 72 characters for long blocks of text

 It is okay to increase the line length limit up to 99 characters

Your probably already familiar with…

PEP8: Code Layout

!/usr/bin/env python3.7

-*- coding: UTF-8 -*-

"""This is a description of the module."""

import json

import os

from astropy.table import Table, vstack

from my_code import utils

__version__ = 0.1

def my_function():

...

PEP 8: Naming Conventions

TYPE NAMING CONVENTION EXAMPLES

Function Use lowercase words separated by underscores. function, my_function

Variable Use lowercase letters or word, or words separated with
underscores. (I.e., snake_case)

x, var, my_variable

Class Start each word with a capital letter. Do not separate words with
underscores. (I.e., CamalCase)

Model, MyClass

Method Use lowercase words separated with underscores. class_method, method

Constant Use an uppercase single letter, word, or words separated by
underscores.

CONSTANT, MY_CONSTANT

Module Use short lowercase words separated with underscores. module.py, my_module.py

Package Use short lowercase words without underscores. package, mypackage

PEP8: General Recommendations

 Use ̀ is` when comparing singletons

 Use ̀ is not` instead of ̀ not ... is`

Wrong

if foo == None:

do_something()

Also wrong

if not foo is None:

do_something()

Correct

if foo is not None:

do_something()

PEP8: General Recommendations

 Always use a `def` statement instead of an assignment statement for

anonymous (lambda) expressions

Wrong

f = lambda x: 2 * x

Correct

def double(x):

return 2 * x

PEP8: General Recommendations

 Derive exceptions from `Exception` rather than `BaseException`

 Use explicit exception catching (avoid bare exceptions)

 Keep `try` statements as simple as possible

Wrong

try:

import platform_specific_module

my_function()

except:

platform_specific_module = None

Correct

try:

import platform_specific_module

except ImportError:

platform_specific_module = None

else:

my_function()

PEP8: General Recommendations

 Booleans are already Booleans – they don’t need comparisons

 For sequences, (e.g., a lists), use the fact that empty sequences are false

Wrong:

if my_boolean == True:

do_something()

Worse:

if my_boolean is True:

do_something()

Still bad:
if len(my_list) != 0:

do_something()

Correct for sequences and booleans

if some_variable:

do_something()

Side Note

 PEP8 inspection is built into many Integrated Development

Environments (IDEs)

 PyCharm: https://www.jetbrains.com/pycharm/

 Atom-pep8: https://atom.io/packages/pep8

 Command line tools for PEP 8 are also available

 Pylint: http://pylint.pycqa.org/

 Flake8: https://flake8.pycqa.org/

 Jupyter Plugins:

 Python Black: https://github.com/drillan/jupyter-black

If You Take Away One Thing...

https://www.jetbrains.com/pycharm/
https://atom.io/packages/pep8
http://pylint.pycqa.org/en/latest/
https://flake8.pycqa.org/en/latest/
https://github.com/drillan/jupyter-black

PEP 257:

Docstring

Conventions

Documentation is key to reusable code

Never assume you will remember what
your code does (or how it works)

Documentation can include technical
notes and derivations.

Saves you headaches when you revisit a
project in part or in whole

Good Documentation Should…

 Explain what each function / module / package does or is responsible for

 Be understandable to you when you revisit the code in 6 months

 Be understandable by someone new to the project (but not necessarily new to

the subject matter)

 Be specific and to the point

PEP257: Single Line Docs

 Triple quotes are always used

 The closing quotes are on the same line as the opening quotes.

 The docstring is a phrase ending in a period. It prescribes the function’s
effect as a command ("Do this", "Return that"), not as a description; e.g. don't

write "Returns the pathname .

def kos_root():

"""Return the pathname of the KOS root directory."""

...

PEP257: Multi-Line Docs

 Start with a single line docstring

 Include additional documentation as necessary

 Always document arguments and returns

def complex(real=0.0, imag=0.0):

"""Form a complex number.

Here is where you would put some additional, in-depth documentation.

Keyword arguments:

real -- the real part (default 0.0)

imag -- the imaginary part (default 0.0)

Returns:

An imaginary number corresponding to the given arguments

"""

External Style Guides (Google)

http://google.github.io/styleguide/pyguide.html

 Based on the principle that docs in the code should be human readable

def connect_to_next_port(minimum):

"""Connects to the next available port.

Args:
minimum: A port value greater or equal to 1024.

Returns:

The new minimum port.

Raises:

ConnectionError: If no available port is found.

"""

http://google.github.io/styleguide/pyguide.html

Document the Code AND the Project

 Extensive project documentation isn’t always necessary and should scale to
meet your project requirements.

 Include a README file at minimum

 Describe the project goals and general approach

 Does not need to be super in depth

 For larger projects, you might document:

 Design choices or style guides

 Project notes (e.g. from papers you read)

 A development plan / roadmap

Side Note

 Use tools like Sphinx and Read The Docs to

generate automatic documentation

 Sphinx: https://www.sphinx-doc.org/

 RTD: https://readthedocs.org

 Running the setup script:

$ pip install sphinx

$ sphinx-quickstart

https://www.sphinx-doc.org/
https://readthedocs.org/

PEP 484: Type Hints
 “New” as of Python 3.5

 Not extensively used but can be extremely helpful for

 Adding inspection support when developing API’s

 Enforcing type linting in your own projects

Type hints are probably not a

“best practice” but planning out

your code ahead of time (e.g.

function signatures) is!

from typing import Union

PathLike = Union[str, Path]

def greeting(name: str) -> str:

return 'Hello ' + name

def process_directory(path: PathLike):

return 'Hello ' + name

How to

Organize

Your Project

Proper organization promotes
reproducibility

How you set up your project effects your
ability to collaborate

Version control provides continuity and
collaboration

Virtual environments eliminate
dependency conflicts

Source Code Organization: Directories
DIRECTORY USAGE

source Your project source code. The code responsible for performing your analysis.

scripts Individual scripts responsible for running separate stages of your analysis.

plotting Scripts for creating finalized plots.

docs Stores your project’s documentation.

notebooks For holding notebooks used in exploratory analysis.

tests Your project test suite.

examples Use if you want to demonstrate your project.

FILE USAGE

README.md Provides a project description.

requirements.txt Outlines your project dependencies.

LICENSE.txt License for the distribution of your code (or the forked source). (GNU)

https://www.gnu.org/licenses/gpl-3.0.en.html

The Infamous “Scripts” Directory

 Scripts should NOT be where your analysis logic is

 Scripts should NOT be a dumping ground for scratch code

 Each script should represent a single distinct task. For e.g.,

 Run image calibration

 Fit object light-curves

 Download / format data from a remote server

 Include (short) module level docs for each script

Use Version Control

 Allows easier collaboration, especially with large teams.

 Provides descriptions of each change and why it was made.

 Backs up your project incase something goes wrong.

 You can revert changes or recover previous code.

gi t cl ean - n
Show s w hich fil es w ould be removed from w orking directory.

Use the - f flag in place of the - n flag to execute the clean.

Push the branch t o <r emot e>, along w ith necessary commit s and

object s. Creates named branch in the remote repo if it doesn’t exist .

gi t push

<r emot e> <br anch>

gi t r eset <f i l e>
Remove <f i l e> from the staging area, but leave the working directory

unchanged. This unstages a file w ithout overw rit ing any changes.
gi t pul l <r emot e>

Fetch the specified remote’s copy of current branch and

immediat ely merge it into the local copy.

gi t r ever t

<commi t >

Create new commit that undoes all of the changes made in

<commi t >, t hen apply it t o the current branch.

gi t f et ch

<r emot e> <br anch>

Fetches a specific <br anch>, from the repo. Leave off <br anch>

to fetch all remote refs.

gi t r emot e add

<name> <ur l >

Create a new connect ion t o a remote repo. Aft er adding a remote,

you can use <name> as a shortcut for <ur l > in other commands.

gi t di f f
Show unst aged changes bet w een your index and

w orking directory.

gi t commi t - m

" <message>"

Commit the st aged snapshot , but inst ead of launching

a text edit or, use <message> as the commit message.

UNDOING CHANGES

gi t st at us List w hich files are staged, unst aged, and unt racked.

REMOTE REPOSITORIES

gi t l og
Display the ent ire commit hist ory using the default format .

For cust omizat ion see addit ional opt ions.

gi t br anch
List all of the branches in your repo. Add a <br anch> argument t o

create a new branch w ith the name <br anch>.

gi t checkout - b

<br anch>

Create and check out a new branch named <br anch>.

Drop the - b flag to checkout an exist ing branch.

gi t mer ge <br anch> Merge <br anch> into the current branch.

gi t add

<di r ect or y>

Stage all changes in <di r ect or y> for the next commit .

Replace <di r ect or y> w ith a <f i l e> to change a specific fil e.

gi t cl one <r epo>

gi t conf i g

user . name <name>

GIT BRANCHES

Define author name t o be used for all commit s in current repo. Devs

commonly use - - gl obal flag to set config opt ions f or current user.

gi t r ebase <base>

gi t r ef l og
Show a log of changes t o the local reposit ory’s HEAD.

Add - - r el at i ve- dat e flag to show date info or - - al l to show all refs.

Clone repo located at <r epo> onto local machine. Original repo can be

located on the local filesystem or on a remote machine via HTTP or SSH.

gi t i ni t

<di r ect or y>

Create empty Git repo in specified directory. Run w ith no

arguments to init ialize the current directory as a git repository.

gi t commi t

- - amend

Replace the last commit w ith the staged changes and last commit

combined. Use w ith nothing st aged to edit the last commit ’s message.

Rebase the current branch ont o <base>. <base> can be a commit ID,

branch name, a t ag, or a relat ive reference to HEAD.

GIT BASICS REWRITING GIT HISTORY

Git Cheat Sheet

Visit at lassian.com/git for more informat ion, t raining, and tutorials

Put one of these at

your desk! (atlassian)

https://www.atlassian.com/git/tutorials/atlassian-git-cheatsheet

Virtual Environments

 Use a different environment for each project

 Prevents dependency conflicts and encapsulates projects separately.

 Environments can be shared!

$ conda create –n my_environment python=3.8

$ conda activate my_environment

$...

$ conda deactivate

Conclusions

 Focus on clean, organized code

 Easier to develop and collaborate on

 Conveys professionalism

 Always include documentation for your code

 Scale to project needs

 Keep your projects organized for reproducibility

