
Best Practices for Intermediate
Level Python Development

Daniel Perrefort

Center for Research Computing

University of Pittsburgh

Where Does this Fit in My Workflow?

Every stage of the software development life cycle has its own best practices

Today we will focus on the process of designing and writing code.

2

Today's Outline
1. What is a "Best Practice"?

2. Writing Clean Code With PEPs

3. Common Software Design Principles

4. Tools for Easier Software Development

Break

Break

3

What Is a Best Practice?

4

What is a "Best Practice"

Any procedure, design pattern, or style that is accepted as being the most effective either by
consensus or by prescription.

"Good code can be read by a professional. Great code can be read by a Student. The best code is no
code at all."

—Anonymous

5

Tips For Following a Best Practice

6

Think about how you will
build something before you

code it

After coding, reflect on why
that was a good (or not so

good) approach

Work collaboratively
whenever possible

Writing high quality code is an ongoing process!

Tips For Not Following a Best Practice

7

When the guideline makes
things more difficult to

understand.

When you break consistency
with surrounding code (like

legacy code).

With the code is no longer
being maintained and you are

making a small patch.

When the guideline breaks
compatibility with other

software.

"Best Practices" should not be followed blindly. Know when they should be ignored.

Today's Focus

8

• Styling Python code for readability

• Documenting your software

• Basic software design principles

• Intermediate / "Advanced" object-oriented design principles

Writing Clean Code
With PEPs

9

Python Enhancement Protocols

“A PEP is a design document providing information to the Python community, or describing a new
feature for Python or its processes or environment.” (PEP 1)

10

Important
Fundamentals

PEP 8: Style Guide for Python Code

PEP 20: The Zen of Python

PEP 257: Docstring Conventions

Bonus PEPs PEP 484: Type Hints

PEP 498: Literal String Interpolation

PEP 572: Assignment Expressions

PEP 20

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one - and preferably only one - obvious way to do it.

Although that way may not be obvious at first unless you're Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea - let's do more of those!

The Zen of Python

https://peps.python.org/pep-0020/

11

>>> import this

Topics covered by PEP8:

• Code Lay-out

• Indentation

• Maximum Line Lengths

• Using Blank Lines and Line Breaks

• File Encoding

• Imports

• Comma and Whitespace Usage

• Documentation and Comment Styling

• Naming Conventions

• Public and Internal Interface Design

• General Programming Recommendations

PEP 8
Style Guide for Python Code

https://peps.python.org/pep-0008/

12

The big idea:

"Code is read much more often than it is written"

Why PEP 8 Matters

13

def f(n):
if n < 0: print("Invalid"); return
elif n == 0: return 0
elif (
n==1
or n==2
): return 1
return f(n-1)+f(n-2)

Question 1: What does this code do?

Why PEP 8 Matters

14

def fibonacci(n):
"""Returns the nth Fibonacci number"""

if n < 0:
print("Invalid")
return

elif n == 0:
return 0

elif n == 1 or n == 2:
return 1

return fibonacci(n-1) + fibonacci(n-2)

Question 1: What does this code do?

Question 2: How long did it take you to answer Question 1?

Things that jump out:
1. Function name + docstring provide context
2. There are 4 return cases
3. The function is recursive

The Basics...

15

Your probably already familiar with:

• Using 4 spaces per indentation level (not tabs!)

• Putting two blank lines before functions and classes

• Limiting line lengths to:

• 79 characters for code

• It is okay to increase the line length limit (Be consistent)

PEP 8 – Using Booleans

16

• Booleans are already booleans – they don’t need comparisons

• For sequences, (e.g., a lists), use the fact empty sequences are false

my_boolean = True

Incorrect
if my_boolean == True:

do_something()

Incorrect
if my_boolean is True:

do_something()

Still Incorrect
if len(my_list) != 0:

do_something()

my_boolean = True

Correct for sequences and booleans
if my_boolean:

do_something()

An empty list is False
if my_list:

do_something()

PEP 8 – Using is

17

Incorrect
if foo == None:

do_something()

Also Incorrect
if not foo is None:

do_something()

Correct
if foo is None:

do_something()

Correct
if foo is not None:

do_something()

• Use `is` when comparing singletons

• Use `is not` instead of `not ... is`

• Remember `None` is a singleton

PEP 8 – Using with

18

Incorrect
for i in range(10):

input_file = open(f"file_{i}.txt")
input_file.readline()
input_file.close()

Better
for ind in range(10):

with open(f"file_{ind}.txt") as input_file:
input_file.readline()

Even Better
directory = Path(".")
for file in directory.glob("file_*.txt"):

with file.open() as input_file:
…

• Also known as a "context manager"

• Use with to handle opening/closing files, database transactions, etc.

PEP 8 – Using try/except

19

• Know "Look before you leap" (LBYL) vs. "Easier to Ask Forgiveness than Permission" (EAFP)

• Use explicit exception catching (avoid bare exceptions)

• Keep `try` statements as simple as possible

Incorrect
try:

import platform_specific_module
my_function()

except:
platform_specific_module = None

Correct
try:

import platform_specific_module

except ImportError:
platform_specific_module = None

else:
my_function()

PEP 8 – Using lambda

20

• Avoid using anonymous functions

• Common exceptions:

• Short, single use functions

• Wrapping types as callables

• Functions defined in a narrow scope

Incorrect
double = lambda x: 2 * x

Correct
def double(x):

return 2 * x

PEP 8 – Variable Naming Conventions

21

TYPE NAMI NG CO NV ENTI O N EXAMPLES

Function Use lowercase words separated by underscores. function, my_function

Variable Use lowercase letters or word, or words separated with underscores. (I.e.,
snake_case)

x, var, my_variable

Class Start each word with a capital letter. Do not separate words with
underscores. (I.e., CamalCase)

Model, MyClass

Method Use lowercase words separated with underscores. class_method, method

Constant Use an uppercase single letter, word, or words separated by underscores. CONSTANT, MY_CONSTANT

Module Use short lowercase words separated with underscores. module.py, my_module.py

Package Use short lowercase words without underscores. package, mypackage

PEP 8 – Variable Naming Example

22

GLOBAL_VAR = 1

def my_method():
print(GLOBAL_VAR)

class MyClass:

def __init__(self, my_var=2):
self.my_var
self._private_var

def my_method(self):
...

PEP 8 – Whitespace

23

GLOBAL_VAR = 1

def my_method():
print(GLOBAL_VAR)

class MyClass:

def __init__(self, my_var=2):
self.my_var
self._private_var

def my_method(self):
...

Functions and methods are
styled mostly the same way.

Notice the single space before
methods – not double space.

Functions and methods are
styled mostly the same way.

No space around equals

Space around equals

PEP 257

The aim of this PEP is to standardize the high-level structure of docstrings:

what they should contain, and how to say it (without touching on any markup

syntax within docstrings). The PEP contains conventions, not laws or syntax.

“A universal convention supplies all of maintainability, clarity, consistency, and

a foundation for good programming habits too. What it doesn’t do is insist

that you follow it against your will. That’s Python!”

—Tim Peters on comp.lang.python, 2001-06-16

If you violate these conventions, the worst you’ll get is some dirty looks. But

some software (such as the Docutils docstring processing system PEP 256,

PEP 258) will be aware of the conventions, so following them will get you the

best results.

Docstring Conventions

https://peps.python.org/pep-0257/

24

http://docutils.sourceforge.net/
https://peps.python.org/pep-0256
https://peps.python.org/pep-0258

What is a Docstring

• String literal as the first statement in a module, function,
class, or method

◦ Assigned to the __doc__ attribute

•Describe what a function/class does not how it works

◦ Exception: Uncommon technical details

•Always use """triple double quotes""" for docstrings

◦ Use r""" if you use backslashes in your docstrings

◦ Use u""" for Unicode docstrings

•Use a blank line after docstring

•Docstrings can be single-line or multi-line

25

def fibonacci(n):
"""Returns the nth Fibonacci Number"""

if n < 0:
print("Invalid")

elif n == 0:
return 0

elif n == 1 or n == 2:
return 1

else:
return fibonacci(n-1) + fibonacci(n-2)

Single-Line Function Docs

26

•Include a single line docstring at minimum

•Use for really obvious cases.

•They should really fit on "one line"

Wrong: Don't document how
def average(a, b):

"""Add a + b and then divide by 2"""

Wrong: Don't document signatures
def average(a, b):

"""function(a,b) -> list"""

def average(a, b):
"""Return the average of a and b"""

Multi-Line Function Docs

27

def connect_to_next_port(self, minimum):
"""Connects to the next available port.

Connections are left opened until closed manually

Args:
minimum (int): A port value greater or equal to 1024

Returns:
The new port value

Raises:
ConnectionError: If no available port is found.

"""

•Start with a one-line description and add as necessary:
◦ A longer explanation

◦ Arguments/Returns

◦ Raised exceptions
Note how the documentation describes
the behavior - not the implementation.

Writing Class Docs

28

• Class docstring summarize class behavior
• List the public methods/attributes
• Required subclass interfaces (if abstract)

• __init__ (or __new__) documents
construction
• Don't document private

methods/attributes

• Subclasses should summarize interfaces
differences
• Use “override” for overwritten methods
• Use “extend” to indicate a call to super

class Square:
"""A class used to represent a geometric Square

Attributes:
length (float): Side length of the square

Methods:
area (int): Return the area of the square

"""

def __init__(self, length):
"""Create a square with the given side length

Args:
length (float): Side length of the square

"""

Writing Class Docs In Reality

29

• Avoid duplicate documentation

• Document class, constructor, and all
public methods

• Implement "full docs" in code developed
for a user base

class Square:
"""A class used to represent a geometric Square"""

def __init__(self, length):
"""Create a new square with a given side length

Args:
length (float): Side length of the square

"""

def _private_helper(self, length):
This doesn't have to be publicly documented,
but docs are still useful for other developers

Writing File Level Docs

30

•For standalone scripts, include
◦ Include usage and command line syntax

◦ Include functionality and environment variables.

◦ Can be elaborate (several screens full)

◦ Must be sufficient for a new user to use the command

◦ Should be quick reference for the sophisticated user.

•For modules:
◦ Describe module purpose

◦ Include submodules / subpackages

◦ Include classes, exceptions and functions

◦ Limit summaries to one-line each.

•Follow the same style as other docstring

Writing Useful Comments

31

Open the file
with file.open() as input_file:

…

We iterate over array elements
for element in array:

print(element)
element += 1
element = element.copy()
...

• Code can be its own documentation.

• Commenting out code blocks is confusing

• Avoid the "royal we"

Load directory contents into database
with file.open() as input_file:

…

Break

32

Common Software
Design Principles

33

Design Principles Overview

FUNDAMENTALS

◦ Big Design Up Front (BDUF)

◦ Keep It Simple (KISS)

◦ Principle of Least Surprise

◦ You Aren’t Going To Need It (YAGNI)

◦ Don't Repeat Yourself (DRY)

OBJECT-ORIENTED DESIGN (OOD)

◦ S - Single-responsibility Principle

◦ O - Open-closed Principle

◦ L - Liskov Substitution Principle

◦ I - Interface Segregation Principle

◦ D - Dependency Inversion Principle

34

Big Design Up Front

• When designing code:
◦ Design the architecture first

◦ Divide requirements into stages based on priority

◦ Repeat BDUF principle at each stage

• Bigger projects = bigger designs

• Design however works for you
◦ Draw it out on a whiteboard

◦ Lay out your design in UML

◦ Draft some exploratory code

35

Design

BuildReview

Keep It Simple (KISS)

• What is "simple" code?
◦ Simple code is usually easy

◦ Simple code is straightforward

• Related Concepts:

◦ Coupling: How much do modules depend on each other?

◦ Cohesion: How well the modules belong together. Simple: Composed of few, well defined parts with low
coupling and high cohesion

• Simple code has only as many parts as necessary with low coupling and high cohesion

36

Keep It Simple (KISS)

• Keep your methods short

• Focus on crucial/critical methods before adding frills

• Methods should only address one problem at a time

• Break up the code into smaller blocks as you go

• Avoid excessive branching, deep nesting, or complex class structures

37

Principle of Least Surprise

• Code usage should be intuitive and obvious

• Some of this is naming practices:

38

def square(a): def square_area(side_length):

• Some of it is implementation:

def subtract(x, y):
"""Subtract two numbers"""

return y - x

def subtract(x, y):
"""Subtract two numbers"""

return x - y

You Aren’t Going To Need It (YAGNI)

39

You Aren’t Going To Need It (YAGNI)

40

That new feature probably wont
◦ Save any time in the long run

◦ Justify the added complexity

◦ Cover real world edge cases

But it probably will
◦ Eat up your time

◦ Add overhead (testing / maintaining)

◦ Break and cause a headache

Don't Repeat Yourself (DRY)

• Duplicate code should be moved into a dedicated function/method

• Duplicate code is WET (write everything twice)

• Example scenario with WET code:
1. You implement a new feature
2. The code for that feature gets copy and pasted repeatedly
3. You find a bug in the feature
4. You go on a bug hunt to find every instance of reused code
5. You hope you found every instance of the problem

• Example scenario with DRY code:
1. You implement a new feature
2. You find a bug in the feature
3. You fix the bug

41

Fundamental Principles (Review)

FUNDAMENTALS

◦ Big Design Up Front (BDUF)

◦ Keep It Simple (KISS)

◦ Principle of Least Surprise

◦ You Aren’t Going To Need It (YAGNI)

◦ Don't Repeat Yourself (DRY)

42

SOLID Design
Principles

◦ S - Single-responsibility Principle

◦ O - Open-closed Principle

◦ L - Liskov Substitution Principle

◦ I - Interface Segregation Principle

◦ D - Dependency Inversion Principle

43

Single Responsibility Principle (SRP)

•Every module, class, or function should be responsible for a single functionality,
and it should encapsulate that part.

•In simpler terms:
◦ SRP applies at all levels of code (functions, classes, modules, packages)

◦ Each "unit of code" should be responsible for a single task

◦ Each unit should be properly encapsulated

•SRP does not argue for giant-monolithic structures. It’s the opposite!

44

"A class should have only one reason to change"
-Robert C. Martin

SRP Example

45

Extract Transform Load

def upload(processed_data, DB):
"""Load data into project DB"""

def average_yield(data):
"""Return average stock yield"""

def download_data(url):
"""Download project data"""

SRP Example

46

Extract Transform Load

class Load:

def upload(data, DB):
"""Load data into DB"""

class Transform:

def average_yield(data):
"""Return value metrics"""

… # Other calculations

class Extract:

def __init__(self):
self._data = None

def authenticate(self, user_key):
"""Log in to remote server"""

def download_data(self, url):
"""Download project data"""

Question: Should the `authenticate` step be in its own class? Why?

Open/Closed

• Objects should be open for extension but closed for modification
◦ A class should be extendable without modifying the class itself

• Open/Closed benefits from:
◦ Clean inheritance structures (assuming SRP)

◦ Polymorphism in dependency classes

◦ Low coupling between classes

47

Open/Closed Example

48

class AreaCalculator:

def total_area(self, shape_arr):
"""Return the total area for a collection of shapes"""

total_area = 0
for shape in shape_arr:

if isinstance(shape, Square):
total_area += shape.length ** 2

elif isinstance(shape, Circle):
total_area += pi * shape.radius ** 2

return total_area

class Square:
"""Stores geometric properties for a square"""

def __init__(self, length):
self.length = length

class Circle:
"""Stores geometric properties for a circle"""

def __init__(self, radius):
self.radius = radius

Open/Closed Example

49

class AreaCalculator:

def total_area(self, shape_arr):
"""Return the total area for a collection of shapes"""

return sum(shape.area() for shape in shape_arr)

class Square:
"""Stores geometric properties for a square"""

def __init__(self, length):
self.length = length

def area(self):
return self.length ** 2

class Circle:

def __init__(self, radius):
self.radius = radius

def area(self):
return pi * self.radius ** 2

Notice how this solution also follows the SRP.

Liskov Substitution

Parent classes should be replicable with their child classes

Note:
We don't actually expect random code substitutions. This is more of a "guiding principle" for designing
good inheritance structures.

In practicality:
◦ Avoid child classes that have little in common with the parent class

◦ Aim for high cohesion

50

Liskov Substitution Example

51

You have been tasked with writing two classes - one
representing a `Square` and one representing a
`Rectangle`.

Define these classes in a way that:
1. One class inherits from another
2. Each class has a method for the `area` of the shape
3. The classes obey Liskov Substitution

Liskov Substitution Example

52

You have been tasked with writing two classes - one
representing a `Square` and one representing a
`Rectangle`.

Define these classes in a way that:
1. One class inherits from another
2. Each class has a method for the `area` of the shape
3. The classes obey Liskov Substitution

Square

Rectangle

Option 1

Liskov Substitution Example

53

You have been tasked with writing two classes - one
representing a `Square` and one representing a
`Rectangle`.

Define these classes in a way that:
1. One class inherits from another
2. Each class has a method for the `area` of the shape
3. The classes obey Liskov Substitution

Square

Rectangle

Rectangle

Square

Option 1 Option 2

Liskov Substitution Example

54

You have been tasked with writing two classes - one
representing a `Square` and one representing a
`Rectangle`.

Define these classes in a way that:
1. One class inherits from another
2. Each class has a method for the `area` of the shape
3. The classes obey Liskov Substitution

class Rectangle:

def __init__(self, length, width):
self.length = length
self.width = width

def area(self):
return self.length * self.width

Liskov Substitution Example

55

You have been tasked with writing two classes - one
representing a `Square` and one representing a
`Rectangle`.

Define these classes in a way that:
1. One class inherits from another
2. Each class has a method for the `area` of the shape
3. The classes obey Liskov Substitution

class Rectangle:

def __init__(self, length, width):
self.length = length
self.width = width

def area(self):
return self.length * self.width

class Square(Rectangle):

def __init__(self, length):
super().__init__(length, length)

Interface Segregation

•An interface is a set of abstractions:
◦ `Square.area()`

◦ `Square.perimiter()`

◦ `Square.width()`

•Clients should not be required to use interfaces they don’t need
◦ Most applicable to large projects

◦ Avoid giant, monolithic interfaces

◦ Rely on smaller, client specific interfaces

56

Interface Segregation Example

57

Interface ML Model

Client Group 1

Interface Segregation Example

58

Interface ML Model

Client Group 1

Client Group 2

Interface Segregation Example

59

Interface ML Model

Client Group 1

Client Group 2

Client Group 3

Interface Segregation Example

60

Interface 2 ML Model

Client Group 1

Client Group 2

Client Group 3

Interface 1

Interface 3

Interfaces can still be
subclasses of a shared
(SOLID) parent class

Dependency Inversion Principle

• High-level constructs should not rely on low level implementations
◦ Both should depend on abstractions (e.g., interfaces).

• Abstractions should not depend on details.
◦ Details (implementations) should depend on abstractions.

• In simple terms: Rely on abstractions

61

Dependency Inversion Example

62

class AreaCalculator:

def total_area(self, shape_arr):
"""Return the total area for a collection of shapes"""

total_area = 0
for shape in shape_arr:

if isinstance(shape, Square):
total_area += shape.length ** 2

elif isinstance(shape, Circle):
total_area += pi * shape.radius ** 2

return total_area

class Square:
"""Stores geometric properties for a square"""

def __init__(self, length):
self.length = length

class Circle:
"""Stores geometric properties for a circle"""

def __init__(self, radius):
self.radius = radius

Dependency Inversion Example

63

class AreaCalculator:

def total_area(self, shape_arr):
"""Return the total area for a collection of shapes"""

return sum(shape.area() for shape in shape_arr)

class Square:

def __init__(self, length):
self.length = length

def area(self):
return self.length ** 2

class Circle:

def __init__(self, radius):
self.radius = radius

def area(self):
return pi * self.radius ** 2

Notice how this solution also follows the SRP
and Open/Closed.

Solid Principles Review

OBJECT-ORIENTED DESIGN (OOD)

◦ S - Single-responsibility Principle

◦ O - Open-closed Principle

◦ L - Liskov Substitution Principle

◦ I - Interface Segregation Principle

◦ D - Dependency Inversion Principle

64

Break

65

Tools for Easier Software
Development

66

Enforcing PEP 8

• Command line tools for PEP 8 are also available
◦ Pylint: http://pylint.pycqa.org/

◦ Flake8: https://flake8.pycqa.org/

• PEP8 inspection is built into many Integrated Development Environments (IDEs)

• Jupyter Plugins:
◦ Python Black: https://github.com/drillan/jupyter-black

67

http://pylint.pycqa.org/
https://flake8.pycqa.org/
https://github.com/drillan/jupyter-black

Using Pylint

68

def Fibonacci(n):
"""Returns the nth Fibonacci Number"""
if n < 0:

print("Invalid")

elif n == 0:
return 0

elif n==1 or x == 2:
return 1

else:
return Fibonacci(n-1) + Fibonacci(n-2)

$ pylint example.py

Using Pylint

69

def Fibonacci(n):
"""Returns the nth Fibonacci Number"""
if n < 0:

print("Invalid")

elif n == 0:
return 0

elif n==1 or x == 2:
return 1

else:
return Fibonacci(n-1) + Fibonacci(n-2)

$ pylint example.py
************* Module example
example.py:1:0: C0114: Missing module docstring (missing-module-docstring)

example.py:1:0: C0103: Function name "Fibonacci" doesn't conform
to snake_case naming style (invalid-name)

example.py:1:14: C0103: Argument name "n" doesn't conform to
snake_case naming style (invalid-name)

example.py:3:4: R1705: Unnecessary "elif" after "return" (no-else-return)

example.py:10:17: E0602: Undefined variable 'x' (undefined-variable)

example.py:1:0: R1710: Either all return statements in a function should return
an expression, or none of them should.
(inconsistent-return-statements)

Your code has been rated at -1.11/10

What is an IDE?

An Integrated Development Environment (IDE) is a software application
designed to maximize a programmer’s productivity by providing a
comprehensive set of tools and facilities.

- Wikipedia

70

Are Jupyter Notebooks an IDE?

Yes... kind of ...
◦ Autocomplete

◦ Syntax highlighting

◦ Code execution

◦ Cross language support (HTML, Markdown)

◦ Plugin support

But no, not really ...
◦ No cross file support

◦ No integrated test suite / profiling tools

◦ No major refactoring or code search tools

◦ Missing dozens of other useful features

71

Common IDE Features

•Refactoring

•Real time syntax and argument checking

•Automatic code formatting

•Automatic docstring templates

•Code navigation

•GitHub Integration

•Test suite integration

•Test coverage reports

•Profiling

•All of your tools in one place (Terminal, File
Explorer, Code Editor, GitHub UI, ...)

•Optimization Suggestions

•Built-in debugging tools

•Auto code generation (getters and setters)

•File navigation

•Command line interface

•PEP 8, 257, and 484 integration

72

Picking an IDE

•IDEs are generally language specific
◦ Some support for "secondary" languages

• > 75% of developers write code in an IDE
◦ Jetbrains 2020 developer survey

73

74

Enforcing Coding Principles

• Develop Software Collaboratively
◦ Get feedback from senior developers

◦ Hold eachother to established guidelines

• Software inspection Tools
◦ Great in a CI setting, but take a lot of upfront configuration

◦ www.codacy.com

◦ www.codeclimate.com

75

http://www.codacy.com/
http://www.codeclimate.com/

GitHub.com

•A cloud-based VCS hosting system with integrated utilities for building and deploying software

•GitHub is built on git and provides web-based wrappers for git features

•Some great GitHub features
◦ Graphical interface for visualizing source code, commit history, branches, etc.

◦ Collaborative platform for reviewing and approving source code changes

◦ Robust permissions management settings

◦ Support for automated tasks

◦ Easier conflict resolution than git (usually)

76

77

Files included
in the

repository

Contents of
the README

File

Current branch

Last Commit

Other
repository data

78

PR title

PR status

Description
of proposed

changes

Requested
changes from

reviewer

Requested
reviewers

Relevant
issues

79

80

81

82

Important
Fundamentals

PEP 8: Style Guide for Python Code

PEP 20: The Zen of Python

PEP 257: Docstring Conventions

Bonus PEPs PEP 484: Type Hints

PEP 498: Literal String Interpolation

PEP 572: Assignment Expressions

Core Design Principles

◦ Big Design Up Front (BDUF)

◦ Keep It Simple (KISS)

◦ Principle of Least Surprise

◦ You Aren’t Going To Need It (YAGNI)

◦ Don't Repeat Yourself (DRY)

Object-Oriented Design (OOD)

◦ S - Single-responsibility Principle

◦ O - Open-closed Principle

◦ L - Liskov Substitution Principle

◦ I - Interface Segregation Principle

◦ D - Dependency Inversion Principle

