Introduction to Version
Control using Git and GitHub

Daniel Perrefort

Center for Research Computing

University of Pittsburgh

Pitt

Where Does this Fit in My Workflow?

Development Operations

A A
4 AY4 A\

1

Today's talk wilmostlyfocus on the "Coding" part of development

VCS lies at the heart of a successful, Harm project

Git/GitHub are the backbone for most modern development workflows

Today's Outline

1. Whatis a version control system?
2. Basic version control with git
Break
3. Developing code with branches
4. Common branching workflows
Break
5. Remote repository storage with GitHub
6. CI with GitHub Actions

What Is a Version
Control System?

The Benefits of Version Control

Provides a system for tracking and managing collaborative changes to project files

MMaintains a history and backup of your project:
What changes were made?
Who made those changes?
Why did they make those changes?

Supports rollback to any project version

Tracks file changes across Backs up your project and Supports simultaneous Supports code versioning
your entire project its development history development on a shared and rollbacks with version
code base tagging

Centralized Version Control (CVCS)

MProject documents are stored on a central (usually remote) server

AAll users can update and modify the central server

Requires network access
Not robust against central server failure

Remote Repository

A

Commit
Update

)
Working Copy Working Copy

WorkingCopy

Distributed Version Control (DVCS)

MEveryone maintains their own copy of the repository

A/CS history is updated locally and then synced periodically with the remote

ACan continue working while offline
Remote Repository
AN

Local Repository Local Repository

O I O '
WorkingCopy Working Copy Working Copy

ommit
Update

VCS Vocabulary

: An incomplete list of some terms we will use today:
Remote Repository

A Repository: The combined files and version history for your project.
A Cloning: The process of making a complete copy of a repository.

Push
Pull

Local Repository

Local Repository

A Commit: A saved set of changes made to one or more files
A Staging: The process of selecting which files should be "committed"

ommit

Update
ommit
Update

@) O

A push: The process of sending new commits to a remote repository
WorkingCopy Working Copy A pull: The process of downloading recent commits from a remote anc

combining their changes into your local copy

Basic Version Control
With git

What I1s GIt?

A lightweight and opersource command line utility for version control

Created in 2005 to support the Linux kernel
Used by over 87% of developers in their daily worklow

$ git --version

Installation:
Windows:https://git-scm.com/download/win

Mac OSincluded with XCode or rur $ brew install git

Linux: $sudo apt install git

12018 Stack Overflow Annual Developer Survey

A Basic Git Recipe

A typical git workflow:

1. Setup alocal repository (do this once)
2. Edityour files normally
. Select which files you want to save a version of ("stage" them)

3
4. Save a version of those files with a descriptive message of your changes ("commit" your changes)

5. Synchronize your changes with a remote repository

Creating a Local Repository

Any directory can be turned into a repository. Let's start by creating a new local repository:

$ mkdirmy_project_dir
$cdmy_project_dir
$gitinit
Initialized empty Git repository in ry _project_dif.git/

$ git status
On branch master

No commits yet

nothing to commit (create/copy files and use "git add" to track)

Changing Local Files

AGit is aware of the local repository's current state (new, deleted, and modified files)

/Use the status command to check the current VCS state

$touchfilel.txt # Alternatively you can make an empty file through your file browser
$touchfile2.txt
$ git status

On branch master

No commits yet
Untracked files:
(use "git add <file>..." to include in what will be committed)
filel.txt
file2.txt

nothing added to commit but untracked files present (use "git add" to track)

Staging Your Changes

Staging is used to select which files you want to commit

$ git add filel.txt
$ git status
On branch master

No commits yet

Changes to be committed:
(use "git rm--cached <file>..." tainstagg
new file: filel.txt

Untracked files:
(use "git add <file>..." to include in what will be committed)
file2.txt

Committing Your Changes

ACommitting a file is not the same as saving it!
Saving a file writes the datato disk

Committing a file adds the saved file datato the VCS

$ git commit-m "Adds example file"
[master (rootcommit) eb78fed] Adds example file
1 file changed, 0 insertions(+), O deletiohs(
create mode 100644 filel.txt

$ git status
On branch master

Untracked files:
(use "git add <file>..." to include in what will be committed)
file2.txt

nothing added to commit but untracked files present (use "git add" to track)

Reviewing the Commit History

Option 1: Use the log command
Includes a hash key, author, date, and commit message for each commit

$git log
commit eb78fed48e625dc02a2c965e2153019654513fel (HEAIAaster)
Author: Daniel Perrefd <djperrefort@pitt.edu>
Date: Thu Jun 3 11:38:37 2020400

Adds example file

Reviewing the Commit History

Option 2: Use the blame command
Indicates the last person to change each line in a file

$ echo Hello World!" >> filel.txt
$ git add filel.txt
$ git commit¢m "Adds example text to file 1"

git blame filel.txt
N96560ec (Daniel 20209-28 20:23:11-0400 1) Hello World!

Using the .gitignore File

AUse gitignoreto specify what file git should ignore
Compiled byte code / build outputs
Hidden system files (e.gDS_Storg
Sensitive data and security keys
Large files above 50 MB (some systems have a 100 MB file size limit)

Example .gitignore file

data/temp_file.csv # Ignores a single file

other_datd # Ignores an entire directory

*. pdf # Ignores all files ending in .pdf
ldocumentation.pdf# Makes sure this specific file is NOT ignored

Undoing Your Changes

Modifying public version history is heavily frowned upon. If you need to replace your most recent commit,
use the amend option

$ git commit--amend-m "an updated commit message"

If you need to go further back, you have two options

Use theresetcommand if:
Undo adding one or more files to the staging area

You want to reset your VCS status to an earlier pointin time
YouDon't need to keep any recent file history
YouHaven'talready pushed your changes to remote

Use therevertcommand if
You want to create a new commit that undoes previoasijnmitedchanges

YouDowant to keep your recent commit data
YouHavealready pushed your changes to remote

Resetting to a Commit

The reset command is used to remove a file from staging reset HEAD to a given commit

To remove a file from staging:

$ git reset # Remove all files from staging
$ git resetmy_dir/ # Reset a single directory or file
$ git reset my_dir/*.py# Reset only files matching a pattern

To reset the position of head

$ git reset 4f2f190fb5d2c6a708c21c6bdbdfbelllaab485€keset to a specific commit
$ git reset HEAD™M# Reset back three commits

Bug Hunting with git

Thebisectcommand is useful for tracking down where/when your code broke:

$ git bisect start
$ git bisect bad # Current version is bad
$ git bisect good 598d0821b# The commit known to be good

Bisecting: 500 revisions left to test after this (roughly 10 steps)

Keep marking commits as good or bad until there are none left

$ git bisect good
$ git bisect bad
$ git bisect skip

$ git bisect reset

Best VCS Practices

VCS only works if yactivelyuse it!
Commit frequently (with every atomic change)

Review any staged commits before submitting them ("git status")
Include descriptive commit messages

Consider working within an IDE that supports git
Many IDEs already offer built in support!

Easy visual indication of changed/staged files
Graphical representations of commit history

Exercise...

1. Create an empty directory

N

Use “gitinit” to turn the directory into a repository
Create a new file in your directory called ‘'my _file.txt"
Use the "git add™ and "git comngin° commands to create a new commit

Add some text tomy_file.txt

o o~ W

Use the "git add™ and "git comnaiin° commands to create a second commit

Solution...

1. Create an empty directory

$ mkdirmy_project_dir

2. Use qitnit” to turn the directory into a repository

$cdmy_project_dir
$gitinit
3/ 4. Create a new file in your directory called "my_file.txt™ créaié R new commit

$touch my_file.txt
$ git add my_file.txt
$ git commit¢m "Added my _file.txt to repository"

4 /5. Add some text tomy_file.txt” and createa second commit

$echo "Thisis some text" >> my _file.txt
$ git add my_file.txt
$ git commit¢m "Added text to my_file.txt"

Break

A quick summary:

$gitinit # Turn a directory into a repository
$ git status # Whatis the current state of the repo

$gitadd # Select a file/directory to be committed
$ git commit# Comit staged changes to the repository
$gitreset # Undo addinga file to the next commit

Developing Code With
Branches

What Is a Branch?

Suppose you...
Want to add a new feature to your software

Need to maintain a working copy of the code
Don't want to get in the way of other developers implementing their own features

One option is to:
Create a copy of the VCS history
Work on adding the new feature by modifying this new copy
Incorporate your changes back into the original code once you're ready

This process is referred to as "branching”

Why Use Branches

Branches isolate development paths so multiple collaborators to work asynchronously

Feature Branch M

Use a branch for a single action item (e.g., add a feature, fix a bug), not for a person

Some important notes
Branches create a copy of the commit histqifOTthe code

Branches can have a shared history
The process of combining branches is called "merging" (more on this later)

Creating a New Branch

A By default, the branch command lists the available branches in your local repository
A Thebranchcommand can also be used to create new branches

$ git branch # List the available branches
$ git branch <newbranch> # Create a new branch off the current branch
$ git branch <newbranch> <baséranch># Create a new branch off a specified branch

A Switch between branches using thikeckoutommand

$ git checkoutmy_cool new feature

Important: Switching branches will modify the file contents in your repository

Git will add, delete, and overwrite files as necessary
Git willnot overwrite uncommitted changes

Quick Tip: Display Branch in Terminal

$ git status
On branch master

No commits yet

nothing to commit (create/copy files and use "git add" to track)

Add the following to yourbash_profileor .bashrc

functionparse_git_branck

git branch--no-color 2> /dev/null | sede '/MN™)/d" -e 's/* \(*\)/\1 /!
}
PS1=\(@)\[\e[32m\|\$(parse_git_brancf\[\e[34m\]\WA[\e[m\]: "
export PS1

Terminal

(01:48 PM) my_branch MyRepository: I

Squash and Merge

MAMultiple options for combining the commit histories

/Squasthis typically the recommended behavior

$ git checkout master
$ git merge--squash featureoranch

TheM5 commit combines
aster Branch «—
] QOO OO0 — fanoma
Feature Branch _>®_>®7

Dealing With Conflicts

Not all branches will merge gracefugysometimes you have conflicts

$ git checkout master
$ git merge feature_branch_name
$ git status
Onbranchmaster
Youhaveunmergedpaths.
(fix conflictsandrun "git commit")
(use"git merge--abort" to abortthe merge)

Unmergedpaths:
(use"qgit add<file>..."to markresolution)

both modified: conflicted file.txt

Dealing With Conflicts

Your conflicted files will look like this:

<L master
Some committed code on this line

Some other committed code on this line
>>>>>>%eature _branch

Once you're done, adall conflicted files and finish with a commit

$ git addconflicted_file.txt
$ git commit-m "Merge in branclfeature _branch_nameé

Quick Tip: Avoiding Conflicts

Commit frequently for each atomic change
Keep branches focused on a single issue

Avoid branches going "stale"

I

Avoid version controlling binary files
Or keep them in a dedicated (sub)directory

Exercise...

Continuing from the last exercise...

1. Use the "git branch” command to create a new branch nammsd great_feature

N

Use the "git checkout” command to switch to that branch
Create a new file called ‘'my _file2.txt” and commit it

Use the "git checkout” command to switch back to the ‘'master’ branch

o &~ W

Check your directory and see how many files there are. What happeneatdile2.txt ?

Solution...

1. Use the "git branch” command to create a new branch nammsd great_featuré

$ git branchmy_great_feature

2. Use the "git checkout” command to switch to that branch

$ git checkouimy_great_feature

3. Create a new file in your directory called ‘'my _file2txtt F YR O2YYA U A

$touch my file2.txt
$gitadd.
$ git commit¢m "Added another text file"

4. Use the "git checkout” command to switch back to tinaster branch

$ git checkout master

‘my_file2.txt” has disappeared!

Common Branching
Workflows

Why are Workflows Important

Different workflows use branches in different ways.
Tools, Processes, and People

There is no "right" workflow, but not all workflows will be a good fit:
Scale to fit your needs
Introduce minimal added overhead
Make it easy to merge and rollback changes as you go

The"Master Only*"
Workflow

Use cases:

Small projects while working
intermittently or alone

Getting a project up and
running for the first time

Archival code storage

Deployment server updated
through a fixed mechanism

Master Branch

O-0-0-0-0

39

The"Feature BranCh" Master Branch ‘ : >_ ______________
Workflow

Use cases:
Teambased projects that NEHEEAie ’®_’@

don't need a working

master

Teams tackling distributed
action items or research Bug Fix _>
goals

The"Development”
Workflow

Use cases:

Developing software that
will be regularly distributed

or deployed

Long term projects that
require tagged versions

Projects that require a copy
of the deployed code version

Master Branch

Bug Fix

41

Customize Your
Workflow

Your chosen workflow should
reflect the need for common
development tasks:

Run test suite against new
code before merging

Quality assurance / code
style checker

Deploy new master code to
publication/ operation

Deploynew master code to
publication/ operation

Many tasks can be run
automatically!!

Master Branch

Bug Fix

@ Tag / Publish New
Version

,,‘_

Q Run Unit Tests / QA

42

Break

A quick summary:

$ git branch # List the available branches
$ git branch <newbranch> # Create new branch off current branch
$ git checkout <nevbranch># Switch to a branch

Remote Repository Storage
with GitHub

What 1s GitHub?

A cloudbased VCS hosting system with integrated utilities for building and deploying software

Git and GitHub are not the same!
GitHub is built on git and provides wélased wrappers for git features

Some greaGitHubfeatures
Graphical interface for visualizing source code, commit history, branches, etc.
Collaborative platform for reviewing and approving source code changes
Robust permissions management settings
Support for automated tasks (more on this later)
Easier conflict resolution

Creating a Repository on GitHub

Step 1. Step 2: Step 3:

Create a new repository

A repository contains all project files, including the revision history. Already have a project repository elsewhere?

Quick setup — if you’ve done this kind of thing before

Import a repository.

MNew reposi-mry or HTTPS S5H https://github.com/djperrefort/temp.git [}
. Get started by creating a new file or uploading an existing file. We recommend every repository include a
€] * : * o
Import repository Owner Repository name README, LICENSE, and gitignore.
Mew gist ﬂ djperrefort = /
Mew organization T Great repository names are short and memorable. Need inspiration? How about solid-spork? . .
9 ...or create a new repository on the command line
Description (optional)
echo "# temp" >> README.md]
git init
git add README.md
o g Publlc g%t commit -m f%rst commit
m—l Anyone on the internet can see this repository, You choose who can commit, git branch -M main
git remote add origin https://github.com/djperrefort/temp.git
® E] Private git push -u origin main
You choose who can see and commit to this repository,
Initialize this repository with:
Skip this step if you're importing an existing repositary. ...or push an existing repository from the command line
[J Add a README file git remote add origin https://github.com/djperrefort/temp.git W)

This is where you can write a long description for your project. Learn mare, . .
’ ? F K git branch -M main

[] Add .gitignore git push -u origin main

Choose which files not to track from a list of templates, Learn more,

[] Choose a license
A license tells others what they can and can't do with your code, Learn mare,

...or import code from another repository
You can initialize this repository with code from a Subversion, Mercurial, or TFS project.

Import code

Pushing Your Commits

/Create a new repository on GitHub.com

/Set the location of the remote server

$ git remote add origin https://github.com/USEHRAME/REP®IAME.git

APushing your changes uploads your changes to the remote repository

$ git push

AWhat if | want to download changes instead? Usepghikcommand

$ git pull

rch or jump to... Pull requests Issues Marketplace

& mwvgroup / Egon @Unwatch v 2 Trsar 0 FFok 0

Other
repository data

<> Code Issues 3 Pull requests Actions Projects 1 Security Insights Settings ¢

C urrent b ran Ch —> ¥ master ~ ¥ 3branches ©10tags Go to file Add file = 4 Code ~ About X

https://mwvgroup.github.io/Egon/

Last COl I ” I ”t ’ " djperrefort Merge pull request #28 from mwvgroup/support_running_in_main .. + ca31588 14 days ago YY) 209 commits
[0 Readme
_—
github/workflows Removes duplicate python version from test matrix 7 months ago
egon Docstring edits for clarity 14 days ago Releases 10
Fi | eS i n Cl u d ed tests Raises an error when calling start/join/kill on pool with size 0 15 days ago © 050 (Latest)
14 days ago
. .gitignore Allows multiple output connectors to attach to an input 7 months ago
I n th e + Greleases
MANIFEST.in Adds missing manifest file 2 months ago
re p OSI to ry README.md Update README.md 21 days ago
Packages
requirements.txt Switches to production guality web server 2 months ago
Mo packages published
= setup.py Updates author information 2 months ago Publish your first package
—
README.md .
m 4 Contributors 2
CO nte ntS Of 9 djperrefort Daniel Perrefort
Egon -
th e R EAD M E< Q MCilento Meghan Cilento
F_ I Egon is a lightweight framework for constructing parallelized analysis pipelines.
See the docs at https://mwvgroup.github.io/Egon/
Environments 1

&7 github-pages Active

Languages

A —
® Python 93.4% ® (S56.6%

O Search or jump to... Pull requests Issues Marketplace Explore

& mwvgroup / Egon ' Public @Umwatch v 2 {yStar 0 YFok 0

<> Code (@) Issues 4 1 Pull requests (® Actions [T Projects 1 @© security [~ Insights 3 Settings

¥ master ~

-o- Commits on Sep 22, 2021

Merge pull request #30 from update_dash - Verified 0 3a6F480 <>
a djperrefort committed 6 days ago v
Disables ray warnigns 0 CETHERE <>
a djperrefort committed 6 days ago
Updates dash import statements 0 5547210 <>
a djperrefort committed 6 days ago

-0~ Commits on Jul 29, 2021
Merge pull request #29 from mwvgroupl/ray_with_actors - Verified 0 4d46a23 <>
a djperrefort committed on Jul 29
Catches import warnings from ray (0 5f75fba <>
a djperrefort committed on Jul 29
Hides ray warning messages 0 of4f2a7 <>
a djperrefort committed on Jul 29
Adds Python 3.9 to unit tests 0 09fc382 <>
a djperrefort committed on Jul 29
Minor version bump 0 204a9de <>
a djperrefort committed on Jul 29
Wraps ray setup in try except 0 beg8f275 <>

a djperrefort committed on Jul 29 X

Removes dafault option from ray in requirements | 47cfb5F <>

Managing Issues

Highlight bugs, feature
requests, and action items

Provide a dedicated space to
communicate specific
challenges and document
progress

Can be assigned one or
more labels for easy
organization

Can assign issues to specific
project (beta), teams, or
developers for cleaner
workflows

Pull requests Issues Marketplace Explore

[m] numpyx’numpy () Sponsor ¢ Watch ~ 561 7 Star
<» Code () Issues 2.1k i1 Pullrequests 252 (+) Actions [7]] Projects 8 [0 Wiki (1) Security |~ Insights
Filters = (), islissue is:open > Labels 86 = Milestones 3
() 2,070 Open ./ 7,680 Closed Author = Label = Projects Milestones -

(® np.linalg.inv with occasional SEGFAULT on macOS

#19532 opened 2 hours ago by max3-2

(© DOC: duplicate docstrings in numpy/core/_add_newdocs.py and numpy/core/multiarray.py 04 - Documentation

good first issue

#19531 opened 9 hours ago by mattip

(©) DOC: add mentions of linalg accelerators in the documentation of dot and matmul 04 - Documentation
#19530 opened 12 hours ago by LeeeLiu

(9 PyCapsule_Import could not import module "datetime”
#19528 opened yesterday by TarunSehgal27

(© Importing ArrayLike or DTypeLike raises a NameError in numpy 1.21.1 static typing

#19521 opened 2 days ago by hhtong .;: 1.21.2 release

() DOC: No source link for some functions in the API reference guide 04 - Documentation

#19520 opened 2 days ago by Mukulikaa

(© High memory usage when printing arrays with many dimensions 01 - Enhancement
#19515 opened 2 days ago by hawkinsp

(9 Casting bool_ to floati6 reads internal representation o0o-Bug

#19514 opened 2 days ago by toslunar

(©) ENH: Fix double-double smallest normal number
#19511 opened 3 days ago by seberg

(® DOC: Clarify that np.array can be 0-dimensional 04 - Documentation 12
#19504 opened 4 days ago by gearia

(© DOC: Add some documentation for adding new UFuUncs 04 - Documentation

HAOANA Aannnnd B daue ann b aannseh 43

5.7k

Sort -

(P

31

31

31

50

