
Introduction to Version
Control using Git and GitHub
Daniel Perrefort

Center for Research Computing

University of Pittsburgh

Where Does this Fit in My Workflow?

Today's talk will mostly focus on the "Coding" part of development

◦ VCS lies at the heart of a successful, long-term project

◦ Git/GitHub are the backbone for most modern development workflows

2

Today's Outline
1. What is a version control system?

2. Basic version control with git

3. Developing code with branches

4. Common branching workflows

5. Remote repository storage with GitHub

6. CI with GitHub Actions

Break

Break

3

What Is a Version
Control System?

4

The Benefits of Version Control

•Provides a system for tracking and managing collaborative changes to project files

•Maintains a history and backup of your project:

◦ What changes were made?

◦ Who made those changes?

◦ Why did they make those changes?

◦ Supports rollback to any project version

Tracks file changes across
your entire project

Backs up your project and
its development history

Supports simultaneous
development on a shared

code base

Supports code versioning
and rollbacks with version

tagging

5

Centralized Version Control (CVCS)
•Project documents are stored on a central (usually remote) server

•All users can update and modify the central server
◦ Requires network access

◦ Not robust against central server failure

Remote Repository

Working Copy Working Copy Working Copy

C
o

m
m

it

U
p

d
at

e

6

Distributed Version Control (DVCS)
•Everyone maintains their own copy of the repository

•VCS history is updated locally and then synced periodically with the remote

•Can continue working while offline

Remote Repository

Local Repository Local Repository Local Repository

P
u

sh

P
u

ll

Working Copy Working Copy Working Copy

C
o

m
m

it

U
p

d
at

e

C
o

m
m

it

U
p

d
at

e

C
o

m
m

it

U
p

d
at

e

7

VCS Vocabulary

Remote Repository

Local Repository Local Repository

P
u

sh

P
u

ll

Working Copy Working Copy

C
o

m
m

it

U
p

d
at

e

C
o

m
m

it

U
p

d
at

e

An incomplete list of some terms we will use today:

• Repository: The combined files and version history for your project.

• Cloning: The process of making a complete copy of a repository.

• Commit: A saved set of changes made to one or more files

• Staging: The process of selecting which files should be "committed"

• push: The process of sending new commits to a remote repository

• pull: The process of downloading recent commits from a remote and
combining their changes into your local copy

8

Basic Version Control
With git

9

Installation:

Windows: https://git-scm.com/download/win

Mac OS: Included with XCode or run:

Linux:

What is Git?
A light-weight and open-source command line utility for version control

◦ Created in 2005 to support the Linux kernel

◦ Used by over 87% of developers in their daily workflow1

12018 Stack Overflow Annual Developer Survey

$ sudo apt install git

$ brew install git

$ git --version

10

A Basic Git Recipe
A typical git workflow:

1. Set up a local repository (do this once)

2. Edit your files normally

3. Select which files you want to save a version of ("stage" them)

4. Save a version of those files with a descriptive message of your changes ("commit" your changes)

5. Synchronize your changes with a remote repository

11

Creating a Local Repository
Any directory can be turned into a repository. Let's start by creating a new local repository:

$ mkdir my_project_dir
$ cd my_project_dir
$ git init

Initialized empty Git repository in ~/my_project_dir/.git/

$ git status
On branch master

No commits yet

nothing to commit (create/copy files and use "git add" to track)

12

Changing Local Files
•Git is aware of the local repository's current state (new, deleted, and modified files)

•Use the status command to check the current VCS state

$ touch file1.txt # Alternatively you can make an empty file through your file browser
$ touch file2.txt
$ git status

On branch master

No commits yet

Untracked files:
(use "git add <file>..." to include in what will be committed)

file1.txt
file2.txt

nothing added to commit but untracked files present (use "git add" to track)

13

Staging Your Changes
Staging is used to select which files you want to commit

$ git add file1.txt
$ git status

On branch master

No commits yet

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: file1.txt

Untracked files:
(use "git add <file>..." to include in what will be committed)

file2.txt

14

Committing Your Changes
•Committing a file is not the same as saving it!

◦ Saving a file writes the data to disk

◦ Committing a file adds the saved file data to the VCS

$ git commit -m "Adds example file"
[master (root-commit) eb78fed] Adds example file
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 file1.txt

$ git status
On branch master

Untracked files:
(use "git add <file>..." to include in what will be committed)

file2.txt

nothing added to commit but untracked files present (use "git add" to track)

15

Reviewing the Commit History
Option 1: Use the log command

◦ Includes a hash key, author, date, and commit message for each commit

$ git log
commit eb78fed48e625dc02a2c965e2153019654513fe1 (HEAD -> master)
Author: Daniel Perrefort <djperrefort@pitt.edu>
Date: Thu Jun 3 11:38:37 2021 -0400

Adds example file

16

Reviewing the Commit History

Option 2: Use the blame command
◦ Indicates the last person to change each line in a file

$ echo 'Hello World!' >> file1.txt
$ git add file1.txt
$ git commit –m "Adds example text to file 1"

git blame file1.txt
^96560ec (Daniel 2021-09-28 20:23:11 -0400 1) Hello World!

17

Using the .gitignore File
•Use .gitignore to specify what file git should ignore

◦ Compiled byte code / build outputs

◦ Hidden system files (e.g., .DS_Store)

◦ Sensitive data and security keys

◦ Large files above 50 MB (some systems have a 100 MB file size limit)

data/temp_file.csv # Ignores a single file
other_data/ # Ignores an entire directory
*.pdf # Ignores all files ending in .pdf
!documentation.pdf # Makes sure this specific file is NOT ignored

Example .gitignore file

18

Undoing Your Changes

If you need to go further back, you have two options

Use the reset command if:
◦ Undo adding one or more files to the staging area

◦ You want to reset your VCS status to an earlier point in time

◦ You Don't need to keep any recent file history

◦ You Haven't already pushed your changes to remote

Use the revert command if
◦ You want to create a new commit that undoes previously commited changes

◦ You Do want to keep your recent commit data

◦ You Have already pushed your changes to remote

Modifying public version history is heavily frowned upon. If you need to replace your most recent commit,
use the amend option

$ git commit --amend -m "an updated commit message"

19

Resetting to a Commit

The reset command is used to remove a file from staging or to reset HEAD to a given commit

$ git reset # Remove all files from staging
$ git reset my_dir/ # Reset a single directory or file
$ git reset my_dir/*.py # Reset only files matching a pattern

To reset the position of head

$ git reset 4f2f190fb5d2c6a708c21c6bd6dfbe111aa6435d # Reset to a specific commit
$ git reset HEAD^^^ # Reset back three commits

To remove a file from staging:

20

Bug Hunting with git

The bisect command is useful for tracking down where/when your code broke:

$ git bisect start
$ git bisect bad # Current version is bad
$ git bisect good 598d0821b # The commit known to be good

Bisecting: 500 revisions left to test after this (roughly 10 steps)

$ git bisect good
$ git bisect bad
$ git bisect skip

$ git bisect reset

Keep marking commits as good or bad until there are none left

21

Best VCS Practices

VCS only works if you actively use it!
◦ Commit frequently (with every atomic change)

◦ Review any staged commits before submitting them ("git status")

◦ Include descriptive commit messages

Consider working within an IDE that supports git
◦ Many IDEs already offer built in support!

◦ Easy visual indication of changed/staged files

◦ Graphical representations of commit history

22

Exercise...

1. Create an empty directory

2. Use `git init` to turn the directory into a repository

3. Create a new file in your directory called ̀ my_file.txt`

4. Use the `git add` and ̀ git commit –m` commands to create a new commit

5. Add some text to `my_file.txt`

6. Use the `git add` and ̀ git commit –m` commands to create a second commit

23

Solution...
1. Create an empty directory

24

$ mkdir my_project_dir

2. Use `git init` to turn the directory into a repository

3 / 4. Create a new file in your directory called ̀ my_file.txt` and create a new commit

$ cd my_project_dir
$ git init

$ touch my_file.txt
$ git add my_file.txt
$ git commit –m "Added my_file.txt to repository"

4 / 5. Add some text to `my_file.txt` and create a second commit

$ echo "This is some text" >> my_file.txt
$ git add my_file.txt
$ git commit –m "Added text to my_file.txt"

Break

25

$ git init # Turn a directory into a repository
$ git status # What is the current state of the repo

$ git add # Select a file/directory to be committed
$ git commit # Comit staged changes to the repository
$ git reset # Undo adding a file to the next commit

A quick summary:

Developing Code With
Branches

26

What Is a Branch?
Suppose you...

◦ Want to add a new feature to your software

◦ Need to maintain a working copy of the code

◦ Don't want to get in the way of other developers implementing their own features

One option is to:
◦ Create a copy of the VCS history

◦ Work on adding the new feature by modifying this new copy

◦ Incorporate your changes back into the original code once you're ready

This process is referred to as "branching"

27

Why Use Branches
Branches isolate development paths so multiple collaborators to work asynchronously

Some important notes
◦ Branches create a copy of the commit history – NOT the code

◦ Branches can have a shared history

◦ The process of combining branches is called "merging" (more on this later)

28

Use a branch for a single action item (e.g., add a feature, fix a bug), not for a person

Creating a New Branch

• By default, the branch command lists the available branches in your local repository

• The branch command can also be used to create new branches

$ git branch # List the available branches
$ git branch <new-branch> # Create a new branch off the current branch
$ git branch <new-branch> <base-branch> # Create a new branch off a specified branch

29

• Switch between branches using the checkout command

$ git checkout my_cool_new_feature

Important: Switching branches will modify the file contents in your repository

◦ Git will add, delete, and overwrite files as necessary

◦ Git will not overwrite uncommitted changes

Quick Tip: Display Branch in Terminal

Add the following to your .bash_profile or .bashrc

function parse_git_branch {
git branch --no-color 2> /dev/null | sed -e '/^[^*]/d' -e 's/* \(.*\)/\1 /'

}
PS1="(\@) \[\e[32m\]\$(parse_git_branch)\[\e[34m\]\W\[\e[m\]: "
export PS1

30

$ git status
On branch master

No commits yet

nothing to commit (create/copy files and use "git add" to track)

Squash and Merge

•Multiple options for combining the commit histories

•Squash is typically the recommended behavior

$ git checkout master
$ git merge --squash feature-branch

The M5 commit combines
changes from F1 and F2

31

Dealing With Conflicts

Not all branches will merge gracefully – sometimes you have conflicts

$ git checkout master
$ git merge feature_branch_name
$ git status

On branch master
You have unmerged paths.
(fix conflicts and run "git commit")
(use "git merge --abort" to abort the merge)

Unmerged paths:
(use "git add <file>..." to mark resolution)

both modified: conflicted_file.txt

32

Dealing With Conflicts

Your conflicted files will look like this:

<<<<<<< master
Some committed code on this line
=======
Some other committed code on this line
>>>>>>> feature_branch

Once you're done, add all conflicted files and finish with a commit

$ git add conflicted_file.txt
$ git commit -m "Merge in branch feature_branch_name"

33

Quick Tip: Avoiding Conflicts

1. Commit frequently for each atomic change

2. Keep branches focused on a single issue

3. Avoid branches going "stale"

4. Avoid version controlling binary files
◦ Or keep them in a dedicated (sub)directory

34

Exercise...

1. Use the `git branch` command to create a new branch named ̀ my_great_feature`

2. Use the `git checkout` command to switch to that branch

3. Create a new file called ̀ my_file2.txt` and commit it

4. Use the `git checkout` command to switch back to the `master` branch

5. Check your directory and see how many files there are. What happened to `my_file2.txt`?

35

Continuing from the last exercise...

Solution...
1. Use the `git branch` command to create a new branch named "my_great_feature"

36

$ git branch my_great_feature

2. Use the `git checkout` command to switch to that branch

3. Create a new file in your directory called ̀ my_file2.txt` and commit it

$ git checkout my_great_feature

$ touch my_file2.txt
$ git add .
$ git commit –m "Added another text file"

4. Use the `git checkout` command to switch back to the `master` branch

$ git checkout master

`my_file2.txt` has disappeared!

Common Branching
Workflows

37

Why are Workflows Important

Different workflows use branches in different ways.
◦ Tools, Processes, and People

There is no "right" workflow, but not all workflows will be a good fit:
◦ Scale to fit your needs

◦ Introduce minimal added overhead

◦ Make it easy to merge and rollback changes as you go

38

The "Master Only"
Workflow

Use cases:
◦ Small projects while working

intermittently or alone

◦ Getting a project up and
running for the first time

◦ Archival code storage

◦ Deployment server updated
through a fixed mechanism

39

Use cases:
◦ Team-based projects that

don't need a working
master

◦ Teams tackling distributed
action items or research
goals

The "Feature Branch"
Workflow

40

Use cases:
◦ Developing software that

will be regularly distributed
or deployed

◦ Long term projects that
require tagged versions

◦ Projects that require a copy
of the deployed code version

The "Development"
Workflow

41

Customize Your
Workflow

42

Your chosen workflow should
reflect the need for common
development tasks:

◦ Run test suite against new
code before merging

◦ Quality assurance / code
style checker

◦ Deploy new master code to
publication / operation

◦ Deploy new master code to
publication / operation

Many tasks can be run
automatically!!

Break

43

$ git branch # List the available branches
$ git branch <new-branch> # Create new branch off current branch
$ git checkout <new-branch> # Switch to a branch

A quick summary:

Remote Repository Storage
with GitHub

44

What is GitHub?

A cloud-based VCS hosting system with integrated utilities for building and deploying software

Git and GitHub are not the same!
◦ GitHub is built on git and provides web-based wrappers for git features

Some great GitHub features
◦ Graphical interface for visualizing source code, commit history, branches, etc.

◦ Collaborative platform for reviewing and approving source code changes

◦ Robust permissions management settings

◦ Support for automated tasks (more on this later)

◦ Easier conflict resolution

45

Creating a Repository on GitHub

46

Step 1: Step 2: Step 3:

Pushing Your Commits

47

•Pushing your changes uploads your changes to the remote repository

$ git push

•What if I want to download changes instead? Use the pull command

$ git pull

•Create a new repository on GitHub.com

•Set the location of the remote server

$ git remote add origin https://github.com/USER-NAME/REPO-NAME.git

48

Files included
in the

repository

Contents of
the README

File

Current branch

Last Commit

Other
repository data

49

Managing Issues

50

◦ Highlight bugs, feature
requests, and action items

◦ Provide a dedicated space to
communicate specific
challenges and document
progress

◦ Can be assigned one or
more labels for easy
organization

◦ Can assign issues to specific
project (beta), teams, or
developers for cleaner
workflows

51

52

Issue title

Unique
identifier

Issue
description

Issue
history

Related pull
requests

Labels

Issue status

Person
assigned to
the issue

Submitting a PR

53

◦ A PR is a request to merge
changes from one branch
into another

◦ Repositories can be
configured so PRs into select
branches (e.g. master)
require a review(s)

◦ Can be assigned tags for
easier organization

54

PR title

PR status

Description
of proposed

changes

Requested
changes from

reviewer

Requested
reviewers

Relevant
issues

After the PR

On GitHub.com
◦ Delete the branch (Can be configured as automatic)

On your local machine
◦ Checkout master and delete the branch

55

$ git checkout master
$ git pull
$ git branch -D my_old_branch # This cannot be undone

CI with GitHub Actions

56

What is CI/CD?

•Continuous Integration (CI): The application of automated processes when integrating code
changes and updates

•Continuous Deployment (CD): The automated deployment of new code to production

•There are many CI/CD services available online (both paid and open source).
◦ Most CI/CD services have build limits

◦ Unless you have a large (enterprise) team, many services have free tiers

57

Building with GitHub Actions
•GitHub actions are written using YAML syntax to define the events, jobs, and steps

•Each action is kept in a separate file

•Actions are stored and version controlled with the rest of your project source code

For example:

name: my-custom-action
on: [push]
jobs:

check-bats-version:
runs-on: ubuntu-latest
steps:

- uses: actions/checkout@v2
- uses: actions/setup-node@v1
- run: npm install -g bats
- run: bats -v

Example copied from the official GitHub Actions Tutorial on Jun 2, 2021 58

Put this in a subdirectory within
your source code:

.github/workflows/my_action.yml

The Anatomy of an Action
Events: A specific activity that triggers a workflow to run.

◦ Example: A commit or merge into a specific branch

Runner: The environment used to run your action
◦ Example: Ubuntu 20.04, Windows Server 2019

Workflow: An automated collection of one or more jobs
◦ Example: Use workflows to test, build, release, or deploy your software.

Job: A collection of steps executed as part of a workflow.

Steps: An individual task that can run commands in a job.

59

Triggering Actions

A simple action can be run on any branch any time code is pushed

name: Run Tests

on: [push]

More complex actions can be run conditionally or on a schedule

on:
push:

branches: [$default-branch, $protected-branches]

pull_request:
The branches below must be a subset of the branches above
branches: [$default-branch]

schedule:
- cron: "0 0 1-31 * *" # This will run daily

60

Action Example: Setup Python

61

name: Unit Tests

on:
push:

jobs:
Run-Tests:

runs-on: ubuntu-latest
strategy:

matrix:
python-version: [3.7, 3.8]

steps:
...

The name of your actions workflow

Run this workflow on every push

Execute workflow in a Linux OS

Run multiple times for different
Python versions

The steps of the "Run-Tests" job

Action Example: Running Tests

62

steps:
- uses: actions/checkout@v2

- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v1
with:

python-version: ${{ matrix.python-version }}

- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .

- name: Run tests with coverage
run: |
coverage run -m unittest
coverage report

Checkout the current version of the code

Pre-made recipe for setting up the
Python environment

Install your Python package
(and its dependencies)

Execute your test suite

63

Actions on the
Market Place

64

Pre-built actions are available
from the community via the
GitHub marketplace

Editing workflow files on
GitHub.com is recommended

Final Thoughts

65

Start Using Git!

•VCS only works if you actively use it!
◦ Commit frequently (with every atomic change)

◦ "Start every day with a pull. Finish every day with a push"

•Pick the best branching workflow for your team
◦ Reassess and modify as needed over time

◦ Adapt your tools and your mindset

•Git isn't just for new projects

66

Additional Resources

Git
◦ Official Reference Docs: git-scm.com/docs

◦ Git "Cheat Sheet": www.atlassian.com/git/tutorials/atlassian-git-cheatsheet

GitHub Actions
◦ GitHub Actions Official Documentation: docs.github.com/en/actions

◦ Quick Start: docs.github.com/en/actions/quickstart

◦ Reference Documentation: docs.github.com/en/actions/reference

Pitt
◦ Center for Research Computing: crc.pitt.edu/content/contact

67

https://git-scm.com/docs
https://www.atlassian.com/git/tutorials/atlassian-git-cheatsheet
https://docs.github.com/en/actions/
https://docs.github.com/en/actions/quickstart
https://docs.github.com/en/actions/reference
https://crc.pitt.edu/content/contact

68

Bonus Slides

69

◦ Environment variables are
defined at the organization
or repository level

◦ Alphanumeric characters
only

◦ Cannot start with number

◦ Not case-sensitive

◦ Must be unique for your
organization / repository

◦ Cannot start with GITHUB_

Using Environmental
Variables (Secrets)

70

What is Origin?
The default name for the remote repository is origin.

71

$ git fetch
$ git branch –a # Use –a to list all branches, including remotes

* feature_1
master
remotes/origin/feature_1
remotes/origin/feature_2

...

Create a local branch that tracks the remote
$ git branch feature_2 remotes/origin/feature_2

OR set up the branch when you push
$ git branch feature_2
$ git checkout feature_2
$ git push -u remotes/origin/feature_2

