
Introduction to Version
Control using Git and GitHub
Daniel Perrefort

Center for Research Computing

University of Pittsburgh

Where Does this Fit in My Workflow?

Today's talk will mostly focus on the "Coding" part of development

VCS lies at the heart of a successful, long-term project

Git/GitHub are the backbone for most modern development workflows

2

Today's Outline
1. What is a version control system?

2. Basic version control with git

3. Developing code with branches

4. Common branching workflows

5. Remote repository storage with GitHub

6. CI with GitHub Actions

Break

Break

3

What Is a Version
Control System?

4

The Benefits of Version Control

ÅProvides a system for tracking and managing collaborative changes to project files

ÅMaintains a history and backup of your project:

What changes were made?

Who made those changes?

Why did they make those changes?

Supports rollback to any project version

Tracks file changes across
your entire project

Backs up your project and
its development history

Supports simultaneous
development on a shared

code base

Supports code versioning
and rollbacks with version

tagging

5

Centralized Version Control (CVCS)
ÅProject documents are stored on a central (usually remote) server

ÅAll users can update and modify the central server
Requires network access

Not robust against central server failure

Remote Repository

WorkingCopy Working Copy Working Copy

C
o

m
m

it

U
p

d
a

te

6

Distributed Version Control (DVCS)
ÅEveryone maintains their own copy of the repository

ÅVCS history is updated locally and then synced periodically with the remote

ÅCan continue working while offline

Remote Repository

Local Repository Local Repository Local Repository

P
u

sh

P
u

ll

WorkingCopy Working Copy Working Copy

C
o

m
m

it

U
p

d
a

te

C
o

m
m

it

U
p

d
a

te

C
o

m
m

it

U
p

d
a

te

7

VCS Vocabulary

Remote Repository

Local Repository Local Repository

P
u

sh

P
u

ll

WorkingCopy Working Copy

C
o
m

m
it

U
p

d
a
te

C
o
m

m
it

U
p

d
a

te

An incomplete list of some terms we will use today:

ÅRepository: The combined files and version history for your project.

ÅCloning: The process of making a complete copy of a repository.

ÅCommit: A saved set of changes made to one or more files

ÅStaging: The process of selecting which files should be "committed"

Åpush: The process of sending new commits to a remote repository

Åpull: The process of downloading recent commits from a remote and
combining their changes into your local copy

8

Basic Version Control
With git

9

Installation:

Windows:https://git -scm.com/download/win

Mac OS:Included with XCode or run:

Linux:

What is Git?
A light-weight and open-source command line utility for version control

Created in 2005 to support the Linux kernel

Used by over 87% of developers in their daily workflow1

12018 Stack Overflow Annual Developer Survey

$ sudo apt install git

$ brew install git

$ git --version

10

A Basic Git Recipe
A typical git workflow:

1. Set up a local repository (do this once)

2. Edit your files normally

3. Select which files you want to save a version of ("stage" them)

4. Save a version of those files with a descriptive message of your changes ("commit" your changes)

5. Synchronize your changes with a remote repository

11

Creating a Local Repository
Any directory can be turned into a repository. Let's start by creating a new local repository:

$ mkdirmy_project_dir
$ cd my_project_dir
$ git init

Initialized empty Git repository in ~/my_project_dir/.git/

$ git status
On branch master

No commits yet

nothing to commit (create/copy files and use "git add" to track)

12

Changing Local Files
ÅGit is aware of the local repository's current state (new, deleted, and modified files)

ÅUse the status command to check the current VCS state

$ touch file1.txt # Alternatively you can make an empty file through your file browser
$ touch file2.txt
$ git status

On branch master

No commits yet

Untracked files:
(use "git add <file>..." to include in what will be committed)
file1.txt
file2.txt

nothing added to commit but untracked files present (use "git add" to track)

13

Staging Your Changes
Staging is used to select which files you want to commit

$ git add file1.txt
$ git status

On branch master

No commits yet

Changes to be committed:
(use "git rm --cached <file>..." to unstage)
new file: file1.txt

Untracked files:
(use "git add <file>..." to include in what will be committed)
file2.txt

14

Committing Your Changes
ÅCommitting a file is not the same as saving it!

Saving a file writes the data to disk

Committing a file adds the saved file data to the VCS

$ git commit -m "Adds example file"
[master (root-commit) eb78fed] Adds example file
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 file1.txt

$ git status
On branch master

Untracked files:
(use "git add <file>..." to include in what will be committed)
file2.txt

nothing added to commit but untracked files present (use "git add" to track)

15

Reviewing the Commit History
Option 1: Use the log command

Includes a hash key, author, date, and commit message for each commit

$ git log
commit eb78fed48e625dc02a2c965e2153019654513fe1 (HEAD -> master)
Author: Daniel Perrefort <djperrefort@pitt.edu>
Date: Thu Jun 3 11:38:37 2021 -0400

Adds example file

16

Reviewing the Commit History

Option 2: Use the blame command
Indicates the last person to change each line in a file

$ echo 'Hello World!' >> file1.txt
$ git add file1.txt
$ git commit ςm "Adds example text to file 1"

git blame file1.txt
^96560ec (Daniel 2021-09-28 20:23:11 -0400 1) Hello World!

17

Using the .gitignore File
ÅUse .gitignoreto specify what file git should ignore

Compiled byte code / build outputs

Hidden system files (e.g., .DS_Store)

Sensitive data and security keys

Large files above 50 MB (some systems have a 100 MB file size limit)

data/temp_file.csv # Ignores a single file
other_data/ # Ignores an entire directory
*.pdf # Ignores all files ending in .pdf
!documentation.pdf# Makes sure this specific file is NOT ignored

Example .gitignore file

18

Undoing Your Changes

If you need to go further back, you have two options

Use the reset command if:
Undo adding one or more files to the staging area

You want to reset your VCS status to an earlier point in time

You Don't need to keep any recent file history

You Haven'talready pushed your changes to remote

Use the revert command if
You want to create a new commit that undoes previously commitedchanges

You Dowant to keep your recent commit data

You Havealready pushed your changes to remote

Modifying public version history is heavily frowned upon. If you need to replace your most recent commit,
use the amend option

$ git commit --amend -m "an updated commit message"

19

Resetting to a Commit

The reset command is used to remove a file from staging or to reset HEAD to a given commit

$ git reset # Remove all files from staging
$ git reset my_dir/ # Reset a single directory or file
$ git reset my_dir/*.py# Reset only files matching a pattern

To reset the position of head

$ git reset 4f2f190fb5d2c6a708c21c6bd6dfbe111aa6435d # Reset to a specific commit
$ git reset HEAD^^^ # Reset back three commits

To remove a file from staging:

20

Bug Hunting with git

The bisect command is useful for tracking down where/when your code broke:

$ git bisect start
$ git bisect bad # Current version is bad
$ git bisect good 598d0821b# The commit known to be good

Bisecting: 500 revisions left to test after this (roughly 10 steps)

$ git bisect good
$ git bisect bad
$ git bisect skip

$ git bisect reset

Keep marking commits as good or bad until there are none left

21

Best VCS Practices

VCS only works if you actively use it!
Commit frequently (with every atomic change)

Review any staged commits before submitting them ("git status")

Include descriptive commit messages

Consider working within an IDE that supports git
Many IDEs already offer built in support!

Easy visual indication of changed/staged files

Graphical representations of commit history

22

Exercise...

1. Create an empty directory

2. Use `git init` to turn the directory into a repository

3. Create a new file in your directory called ̀ my_file.txt`

4. Use the `git add` and ̀ git commit ςm` commands to create a new commit

5. Add some text tòmy_file.txt`

6. Use the `git add` and ̀ git commit ςm` commands to create a second commit

23

Solution...
1. Create an empty directory

24

$ mkdirmy_project_dir

2. Use `git init` to turn the directory into a repository

3 / 4. Create a new file in your directory called ̀ my_file.txt` ŀƴŘ create a new commit

$ cd my_project_dir
$ git init

$ touch my_file.txt
$ git add my_file.txt
$ git commit ςm "Added my_file.txt to repository"

4 / 5. Add some text tòmy_file.txt` and create a second commit

$ echo "This is some text" >> my_file.txt
$ git add my_file.txt
$ git commit ςm "Added text to my_file.txt"

Break

25

$ git init # Turn a directory into a repository
$ git status # What is the current state of the repo

$ git add # Select a file/directory to be committed
$ git commit# Comit staged changes to the repository
$ git reset # Undo adding a file to the next commit

A quick summary:

Developing Code With
Branches

26

What Is a Branch?
Suppose you...

Want to add a new feature to your software

Need to maintain a working copy of the code

Don't want to get in the way of other developers implementing their own features

One option is to:
Create a copy of the VCS history

Work on adding the new feature by modifying this new copy

Incorporate your changes back into the original code once you're ready

This process is referred to as "branching"

27

Why Use Branches
Branches isolate development paths so multiple collaborators to work asynchronously

Some important notes
Branches create a copy of the commit history ςNOT the code

Branches can have a shared history

The process of combining branches is called "merging" (more on this later)

28

Use a branch for a single action item (e.g., add a feature, fix a bug), not for a person

Creating a New Branch

ÅBy default, the branch command lists the available branches in your local repository

ÅThe branchcommand can also be used to create new branches

$ git branch # List the available branches
$ git branch <new-branch> # Create a new branch off the current branch
$ git branch <new-branch> <base-branch> # Create a new branch off a specified branch

29

ÅSwitch between branches using the checkoutcommand

$ git checkout my_cool_new_feature

Important: Switching branches will modify the file contents in your repository

Git will add, delete, and overwrite files as necessary

Git will not overwrite uncommitted changes

Quick Tip: Display Branch in Terminal

Add the following to your .bash_profileor .bashrc

function parse_git_branch{
git branch --no-color 2> /dev/null | sed -e '/^[^*]/d' -e 's/* \ (.*\)/\1 /'

}
PS1="(\@) \ [\e[32m\]\$(parse_git_branch)\ [\e[34m\]\W\[\e[m\]: "
export PS1

30

$ git status
On branch master

No commits yet

nothing to commit (create/copy files and use "git add" to track)

Squash and Merge

ÅMultiple options for combining the commit histories

ÅSquashis typically the recommended behavior

$ git checkout master
$ git merge --squash feature-branch

The M5 commit combines
changes from F1and F2

31

Dealing With Conflicts

Not all branches will merge gracefully ςsometimes you have conflicts

$ git checkout master
$ git merge feature_branch_name
$ git status

Onbranchmaster
Youhaveunmergedpaths.
(fix conflictsandrun "git commit")
(use"git merge--abort" to abort the merge)

Unmergedpaths:
(use"git add<file>..."to markresolution)

both modified: conflicted_file.txt

32

Dealing With Conflicts

Your conflicted files will look like this:

<<<<<<< master
Some committed code on this line
=======
Some other committed code on this line
>>>>>>>feature_branch

Once you're done, add all conflicted files and finish with a commit

$ git addconflicted_file.txt
$ git commit -m "Merge in branch feature_branch_name"

33

Quick Tip: Avoiding Conflicts

1. Commit frequently for each atomic change

2. Keep branches focused on a single issue

3. Avoid branches going "stale"

4. Avoid version controlling binary files
Or keep them in a dedicated (sub)directory

34

Exercise...

1. Use the `git branch` command to create a new branch named ̀my_great_featurè

2. Use the `git checkout` command to switch to that branch

3. Create a new file called ̀ my_file2.txt` and commit it

4. Use the `git checkout` command to switch back to the `master` branch

5. Check your directory and see how many files there are. What happened to`my_file2.txt`?

35

Continuing from the last exercise...

Solution...
1. Use the `git branch` command to create a new branch named "my_great_feature"

36

$ git branch my_great_feature

2. Use the `git checkout` command to switch to that branch

3. Create a new file in your directory called ̀ my_file2.txt` ŀƴŘ ŎƻƳƳƛǘ ƛǘ

$ git checkout my_great_feature

$ touch my_file2.txt
$ git add .
$ git commit ςm "Added another text file"

4. Use the `git checkout` command to switch back to the `master̀ branch

$ git checkout master

`my_file2.txt` has disappeared!

Common Branching
Workflows

37

Why are Workflows Important

Different workflows use branches in different ways.
Tools, Processes, and People

There is no "right" workflow, but not all workflows will be a good fit:
Scale to fit your needs

Introduce minimal added overhead

Make it easy to merge and rollback changes as you go

38

The "Master Only"
Workflow

Use cases:
Small projects while working
intermittently or alone

Getting a project up and
running for the first time

Archival code storage

Deployment server updated
through a fixed mechanism

39

Use cases:
Team-based projects that
don't need a working
master

Teams tackling distributed
action items or research
goals

The"Feature Branch"
Workflow

40

Use cases:
Developing software that
will be regularly distributed
or deployed

Long term projects that
require tagged versions

Projects that require a copy
of the deployed code version

The "Development"
Workflow

41

Customize Your
Workflow

42

Your chosen workflow should
reflect the need for common
development tasks:

Run test suite against new
code before merging

Quality assurance / code
style checker

Deploy new master code to
publication / operation

Deploynew master code to
publication / operation

Many tasks can be run
automatically!!

Break

43

$ git branch # List the available branches
$ git branch <new-branch> # Create new branch off current branch
$ git checkout <new-branch># Switch to a branch

A quick summary:

Remote Repository Storage
with GitHub

44

What is GitHub?

A cloud-based VCS hosting system with integrated utilities for building and deploying software

Git and GitHub are not the same!
GitHub is built on git and provides web-based wrappers for git features

Some great GitHubfeatures
Graphical interface for visualizing source code, commit history, branches, etc.

Collaborative platform for reviewing and approving source code changes

Robust permissions management settings

Support for automated tasks (more on this later)

Easier conflict resolution

45

Creating a Repository on GitHub

46

Step 1: Step 2: Step 3:

Pushing Your Commits

47

ÅPushing your changes uploads your changes to the remote repository

$ git push

ÅWhat if I want to download changes instead? Use the pull command

$ git pull

ÅCreatea new repository on GitHub.com

ÅSet the location of the remote server

$ git remote add origin https://github.com/USER-NAME/REPO-NAME.git

48

Files included
in the

repository

Contents of
the README

File

Current branch

Last Commit

Other
repository data

49

Managing Issues

50

Highlight bugs, feature
requests, and action items

Provide a dedicated space to
communicate specific
challenges and document
progress

Can be assigned one or
more labels for easy
organization

Can assign issues to specific
project (beta), teams, or
developers for cleaner
workflows

51

